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Abstract

Despite several successes in document under-
standing, the practical task for long docu-
ment understanding is largely under-explored
due to several challenges in computation and
how to efficiently absorb long multimodal
input. Most current transformer-based ap-
proaches only deal with short documents and
employ solely textual information for attention
due to its prohibitive computation and memory
limit. To address those issues in long docu-
ment understanding, we explore different ap-
proaches in handling 1D and new 2D position-
aware attention with essentially shortened con-
text. Experimental results show that our pro-
posed models have the advantages for this task
based on various evaluation metrics. Further-
more, our model makes changes only to the
attention and thus can be easily used for any
transformer-based architecture.

1 Introduction

The task of document understanding has recently
gleaned many successes (Xu et al., 2020, 2021b;
Appalaraju et al., 2021). This task requires multi-
modal input that makes it heavier than the text-only
ones, resulting in most models only being capable
of dealing with short documents, i.e. having up to
512 tokens. However, there exist long documents
almost everywhere, e.g. contracts, scientific papers,
newsletters, or Wikipedia articles, which are typ-
ically longer than 1,000 words. To automatically
summarize and understand such long documents
urges long document understanding to become an
important task in both NLP and Al

Long document understanding faces several big
challenges. 1) Recent document understanding
approaches heavily rely on transformer (Vaswani
et al., 2017). However, transformer suffers from
the quadratic attention that usually limits the input
to 512 words. Therefore, the correlation across
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Figure 1: Distribution of document length in RVL-
CDIP (Harley et al., 2015), a subset of IIT-CDIP used
predominantly in the document understanding pretrain-
ing task. Most of them are longer than 1,000 words.

long paragraphs/pages is yet to be learned. 2)
Understanding long documents requires power to
model all long information available, not only just
in text but also in other modalities such as spatial
information. For example, LayoutLM (Xu et al.,
2020) showed that short document understanding
is largely improved by additionally embedding spa-
tial into text information. How to efficiently make
use of spatial information for long document under-
standing, however, is still an open and challenging
problem regarding computation cost and adaptabil-
ity.

For long documents as shown in Figure 1, it
is reasonable to assume that useful information is
spanned across their lengths. Especially current
OCR technology, which is essential for data pre-
processing, only supports extracting spatial infor-
mation on every page basis, without the knowledge
of other pages. This behavior poses yet another big
challenge in dealing with long documents, which
requires a proper method to connect information
across pages for all input modalities given.

In this paper, we discover new approaches in
dealing with long document understanding, which



address the aforementioned challenges. We care-
fully preprocess OCR data to establish the proper
linkages across pages. Then we explore approaches
for directly reducing the heavy attention cost while
achieving high performance, flexibly using the
typical 1D (textual) and/or novelly, 2D (spatial)
reduced contextual information, without adding
more components into the already-heavy trans-
former (Appalaraju et al., 2021; Nguyen et al.,
2021). Despite being simple, we show through
experiments that both 1D and 2D information can
enhance the practicality of transformer-based mod-
els while achieving the needed power of handling
long documents.

Our contributions 1) We newly motivate the
simplistic, flexible use of spatial input in attention,
making it plug-able to transformer. 2) We are able
to tackle the document understanding task with in-
put data up to 4096 words. 3) Experimental results
prove the advantages of our approaches on vari-
ous long-document datasets in comparison to short
models for both 1D and 2D contextual information.

2 Related Work

Transformer Attention For Long Documents
There are several methods that address the
quadratic cost transformer attention.  Long-
former (Beltagy et al., 2020) uses sliding window to
reduce the context, only retrains some sparse global
connections. Similarly, ETC (Ainslie et al., 2020)
embeds relative positions and adds contrastive pre-
dictive encoding. Bigbird (Zaheer et al., 2020)
optimizes Longformer’s sliding window by adding
random connections. Our model similarly uses
sliding window but differs in that it exploits layout
input along with the typical text input flexibly and
directly into attention.

Multimodal Document Pretraining Docu-
ment understanding largely inherits from multi-
modal pretraining (Li et al., 2020; Chen et al.,
2020; Luo et al., 2020) with the successes from
LayoutLM (Xu et al., 2020, 2021a). Recently,
Docformer (Appalaraju et al., 2021) and Strucu-
turalLM (Li et al., 2021) introduced a two-pronged
approach: having new pretrain tasks and suitable
changes to the processing or embedding. Probably
Skim-Attention (Nguyen et al., 2021) has the most
related motivation for long documents, although
we have a more memory-efficient, and faster way
of handling layout input directly into attention and
not from after the embedding like theirs, and con-

sequently support longer input (4096 vs. 2048).

3 Our Model

3.1 Pretrain Model Architecture

We employ Masked Lanuage Model (MLM) archi-
tecture as in other document intelligence work, e.g.
Xu et al. (2020, 2021a); Appalaraju et al. (2021),
but make proper changes to enable the capability
of long documents. Different from a typical MLM,
we have multimodal-instead of text-only input—
which makes the model heavier and thus cannot
deal with long documents without proper changes,
as described in our model shown in Figure 2.
First, we use the sliding-window inspired
from Beltagy et al. (2020), given its lightweight
and elegance in limiting the context window, mak-
ing it significantly more memory friendly. Second,
we introduce new spatial-based attention masks,
in which each context window to a bounding box
is determined by calculating its spatial neighbors,
instead of the given neighboring words. Likewise,
our model does not only use spatial input in the
embedding but also in attention directly with pre-
served spatial correlation. Section 3.3 will elabo-
rate on the establishment and usage of these new
distance masks in comparison with others.

3.2 Post-OCR Processing

This processing is crucially important for long doc-
uments that usually have multiple pages because
current OCR engines only generate single-page re-
sults, without any connections among pages. More
current models are short models that support up to
512 tokens, and thus discard the rest of valuable
information. Consequently, to make our model
capable of long documents, we process the post-
OCR data to establish the connections for all input
components among the pages. For example, the
bounding boxes on page n need adjusting the coor-
dinates to include the previous n — 1 pages.

3.3 Different Attention Masks

We begin to describe the original transformer at-
tention and our different approaches for long docu-
ments, using 1D and 2D input data.

Original Attention Masks (Vaswani et al.,
2017) (also known as full attention masks) For
each layer, it is calculated by Equations (1) and (2),

T
score(Q, K) = softmax (?/I[% ) (1)
attn_score(Q, K, V) = score(Q, K) - V, 2)
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Figure 2: Our MLM pretrain model architecture. Unlike LayoutLM, we use 1D and 2D input for not only in

embeddings but also in transformer attention.

where Q, K, V stand for the learnable Query, Key,
and Value matrices respectively. Given the lengths
of these three matrices are all N (input length), the
complexity of each step is O(N?).

Sliding-Window Masks (Figure 3a) We use the
sliding-window approach as inspired from Beltagy
et al. (2020), which limits the context for each
token from N down to a smaller M, e.g. N =
4096, M = 512, and so the complexity is reduced
to O (NM).

K., = get_window(K) 3)

“
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T
score(Q, K) = softmax (?}%")

V., = get_window(V)
attn_score(Q, K, V) = score(Q, K) - V,,

Using that intuition, the calculations are now
changed to Equations (3-6), with the added
get_window steps in Equations (3) and (5) L
Sliding-Window plus Random Token Masks
(Figure 3b) On top of sliding windows, we add a
few random tokens to establish more connections
to the attention, similarly to Zaheer et al. (2020).
This operation essentially makes changes only to
'To enable fast calculations in Equations (4) and (6) with
now-changed matrix shapes, one has to extract and chunk the

contexts for all tokens in a way that can exploit fast matrix
multiplication (e.g. by using einsum)

Equations 3 and 5, with extraction of random to-
kens.
K., = get_2D_window(K)
V. = get_2D_window(V)

(N
®)

Spatial Distance Masks (Figure 3c) Differ-
ent from previous attention types, the M context
tokens for each token is not decided by textual
(1D) but instead by spatial (2D) input with some
steps. First, we calculate the centers of all bound-
ing boxes. Second, we fit the kNN algorithm to
the sequence of those points based on L2 distance,
resulting in a 2D distance matrix (having the same
shape N M as sliding window). In summary, we
replace Equations 3 and 5 with Equations 7 and 8.

3.4 Pretrain Model Variants

We build out MLLM pretrain architecture with var-
ious attention mechanisms for long documents as
described in Section 3.3 and compare their perfor-
mances in several tasks. Since this change is only
made directly to the attention, our method can be
used off-the-shelf for transformer-based architec-
ture with multimodal input.

SW Model This model directly uses Sliding-
Window (SW) masks for attention, which signifi-
cantly reduces the computation and was shown to
be effective for long documents in text-based tasks.
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Figure 3: Visualization of our models’ different types of attention mask for real samples from RVL-CDIP
dataset (Harley et al., 2015) with limit length of 2048 and context size 512 (for both textual and spatial cases).
Fig 3a is sliding window (SW), Fig 3b is sliding window in blocks with 1-per-block random blocks (SW+RAND),
Fig 3c is spatial-based distance mask, and Fig 3d is the combination of sliding window and distance modes. Leg-
end: Attention mask may only have values of 0 and 1, which are represented as the light-yellow background and

dark-blue foreground colors, respectively.

SW+RAND Model This model uses Sliding-
Window plus Random Token Masks.

DISTANCE Model This model uses Spatial Dis-
tance Masks, with all neighboring contexts being
preemptively computed using kNN, and is imple-
mented in the data loading instead of transformer
encoding phase, not to slow down the main process.

DISTANCE+SW Model. In this model, we
combine the spatial and textual attention masks
together in a single attention pass, with the moti-
vation of combining the benefits of those two. In
detail, it is done by Equations (3—6), with Equation
(3) now being replaced by Equation (7).

4 Experiments

4.1 Tasks and Datasets

Pretraining We use IIT-CDIP Test Collection
1.0 2 dataset for our MM pretraining task. This
is a large-scale dataset with over 6M multi-page
documents and around 11M pages in total (each
page is stored as an image and is preprocessed by
an OCR engine).

Document Classification This document classi-
fication task uses RVL-CDIP (Harley et al., 2015)
dataset, which is a subset of the pretraining dataset
IIT-CDIP. It comprises 16 classes and each class
equally has 25K grayscale images. The document
length distribution is shown in Figure 1.

Sequence Labeling There are two datasets for
this task, namely Kleister-NDA and FunSD.

1) FunSD (Guillaume Jaume, 2019)3 This is
a lightweight dataset that has 199 noisy scanned
forms, which contain around 31K words and 9.7K

2https://ir.nist.qov/cdip/
3https://guillaumejaume.github.io/FUNSD

entities with 7 given token classes. Though it is
not a long-document dataset (all documents have <
512 words), it is useful for ablation studies.

2) Kleister-NDA (Gralinski et al., 2020;
Stanistawek et al., 2021)* This dataset has 540 doc-
uments in total (254 train, 83 val, and 203 test) with
2,160 entities annotated and an average of 2,540
words per document. Due to the difficulty in repro-
ducibility with unclear results post-processing, this
task is cast similarly to FunSD with 4 classes.

4.2 Baselines

We compare our 4 model variants (Figure 3) with
the following baselines:

Text: This group consists of models that only
accept text input including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and other long
models including Bigbird (Zaheer et al., 2020) and
Longformer (Beltagy et al., 2020) °.

Text+Layout: This group contains models that
accept both text and layout information, including
LayoutLM (Xu et al., 2020) variants.

4.3 Results and Discussions

Document Classification As shown in Table 1,
long models (SeqLen 4096) clearly outperform
short ones in both baseline groups, with or without
layout information added to the input. Furthermore,
all our 4 model variants outperform all the base-
lines.

This result concurs with our observation that
long documents have valuable information spanned

4https://github.com/applicaai/kleisterfnda

30Our SW and SW+RAND models share the similarity with
those last two ones, with difference of handling multimodal
input for document intelligence.
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Type Model SeqLen Acc (%) 1
BERT-base 512 89.81
RoBERTa-base 512 90.06
BERT-large 512 89.92

Text RoBERTa-large 512 90.11
Bigbird-base 4096 93.48
Longformer-base 4096 93.85
Bigbird-large 4096 93.34
Longformer-large 4096 93.73
LayoutLM-base 512 91.88
LayoutLM-large 512 91.90

Text+Layout Ours SW 4096 94.50
Ours SW+RAND 4096 95.25
Ours DISTANCE 4096 94.79
Ours DISTANCE+SW 4096 94.69

Table 1: Classification accuracy for RVL-CDIP. For

this long-document dataset, the models capable of us-
ing 4096 words uniformly beat other models and layout
information helps with the task compared with using
Text input. All our long models show their advantages
on this long dataset.

Type Model Seqlen F1 7
BERT-base 512 47.06

Text BERT-large 512 52.66
Longformer-base 4096 61.78

Bigbird-base 4096  46.98
LayoutLM-base 512 55.69
LayoutLM-large 512 61.95

Text+Layout Ours SW 4096  64.06
Ours SW+RAND 4096 58.92

Ours DISTANCE 4096 57.01

Ours DISTANCE+SW 4096  44.70

Table 2: Results on Kleister-NDA. Although this

dataset is challenging, long models still show advan-
tages over short ones.

across the length. And importantly, our models
show advantages of handling long multimodal in-
put, and hence are more practical with real data
that are usually longer than 512 tokens.

Sequence Labeling with Kleister-NDA® Com-
paring the “base” versions (separated from their
“large” counterparts), Table 2 shows that most of
our models, which are also the “base” ones, clearly
have better scores. Particularly, our SW model is
the best performer.

Furthermore, our DISTANCE+SW is not per-
forming equally well. Our hypothesis is that the
OCR engine cannot understand the decoying an-
notation in this dataset, and thus generates spatial
results that do not correlate well with the text. Con-
sequently, the combination of textual and spatial
information does not result in the benefits of those
two.

SThe results are from the validation split due to no annota-
tion for the test split provided in the dataset.

4.4 Ablation: Long Models on Short Dataset

The purpose of this study is to explore how long
models perform on short documents, which also ap-
pear in practice, to see whether they can generalize
their performance to shorter data.

Type Model Seqlen F1 7
BERT-base 512 60.3
RoBERTa-base 512 66.5
BERT-large 512 65.6

Text RoBERTa-large 512 70.7
Bigbird-base 4096 45.8
Longformer-base 4096 714
Bigbird-large 4096 46.8
Longformer-large 4096 73.5
LayoutLM-base 512 78.7
LayoutLM-large 512 79.0
Ours SW 4096 69.9

Text+Layout Ours SW+RAND 4096 77.1
Ours DISTANCE 4096 64.0

Ours DISTANCE+SW 4096 61.8

Table 3: Results on FunSD dataset. As usual, layout
information is helpful in boosting performance. How-
ever, long models do not perform well compared with
short models on this small, short-document dataset.

Table 3 shows that on FunSD, we see again that
layout information generally helps in the case of
multimodal input. However, long models do not
perform well compared to short ones, although
the gap between the best of ours and the baselines
are not very far away (77.1 vs. 79.0). The main
reason is that long models essentially have much
more parameters than short ones. And not only is
FunSD short, it is also very small. As a result, the
limited phase of fine-tuning on only 199 samples
can hardly tune parameters well for good results.
Especially, since all documents are short, most long
input to the model is zero padding and thus not
enough for contributing for better scores.

Another reason is that long models have their
embedding representations trained for the length
of 4096 tokens and hence are hard to adapt to 512-
token input with just a few fine-tuning steps. As
a result, analyzing the data well to design suitable
pretraining and fine-tuning models is very impor-
tant.

The next 2 studies will explore the implications
of the newly-added spatial attention masks in our
models.

4.5 Ablation: Different-Length Documents

This study aims to explore how the models work
if we do not cut any information from documents
(the models take input up to their maximum length
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Figure 4: RVL-CDIP performance on different docu-
ment types based on their original lengths (i.e. with-
out purging) with LayoutLM (with the best “large”
version) and our spatial models (DISTANCE and Di1s-
TANCE+SW). Our models are consistently better.

limit). Out of 40K test samples in RVL-CDIP, there
are 9268 samples with length > 512, 2312 with
length > 1024, and only 106 with length > 2048.

Figure 4 shows the consistent observation that
our models are much better than LayoutL.M, and
yet perform slightly worse as the original document
length increases. There could be several possible
reasons for this behavior: the models are not well
pretrained and/or fine-tuned, many long documents
have lots of confusing parts, or there are many
noises in OCR results.

4.6 Ablation: Different Max Input Lengths

Given the pretrained models that can accept input
up to 4096 tokens, we finetune them with the input
of different maximum lengths, i.e. excess will be
purged. As a result, we use all 40K test samples in
RVL-CDIP for this study.

As shown in Figure 5, our models are better and
better as more tokens are absorbed, thus once again
confirming our intuition that valuable information
is spanned across the length. As a result, if the
model capacity permits, we should not limit the
capacity to 512 tokens as in most current models
in the literature.

4.7 Further Discussion on Spatial Masks

As seen in the above experimental results, direct
usage of 2D layout context information in the trans-
former attention has some advantages. However,
its performance does not match the typical usage
of 1D textual information. This might be discour-
aging at first since introducing spatial masks brings
heavier computation compared to textual ones. We
hypothesize the drawbacks are due to some ob-
jective limitations. First, the kNN suffers some
inaccuracy compared with normal (and slow) cal-
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Figure 5: RVL-CDIP performance on different

maximum lengths using our DISTANCE and Dis-
TANCE+SW models. For each of lengths 512, 1024,
2048, and 4096, the test set contains the same 40K sam-
ples. A longer maximum length gives better results.

culations. Second, the performance of the whole
pipeline heavily depends on OCR quality, e.g. in
Kleister-NDA with decoy design, OCR results are
not well aligned with the text. Consequently, we
conjecture that with future development in OCR
technologies, the use of spatial masks would be
more and more helpful in practice.

5 Conclusion and Discussion

We propose a versatile solution for long document
understanding, in which the shortened context can
be used in the form of textual and/or layout in-
put for the attention mechanism in a flexibly plug-
gable manner. We keep our approach simple by
not putting extra overhead on complicated embed-
ding or encoding methods. Despite its simplic-
ity, our solution has shown promising experimen-
tal results on document understanding tasks with
long, multimodal input. In the future, we will fur-
ther reduce the memory consumption of models
with given multimodal input and speed up the pre-
training. Similar to LayoutLM, pretraining usually
takes 80 hrs/epoch with 8 V100 GPUs. Thus there
are certainly lots of room for improvement to make
these models more efficient and practical.
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Parameter Name Value
do_lower_case true

fp16 true
fp16_backend amp
gradient_accumulation_steps 4
max_seq_length 4096
max_2d_position_embeddings 1024
max_steps 1000000
model_name_or_path allenai/longformer-base-4096
dataloader_num_workers 64

tasks mask_Im
optimizer transformers_AdamW
learning_rate Se-5
warmup_ratio 0.1
weight_decay 0.01
whole_word_masking false
add_prefix_space true
attention_window 512

Table 4: Main pretrain hyperpameters on the MLM
pretraining task for the ITT-CDIP large-scale dataset.
There are 3 variants share this set of parameters that are
Ours SW, Ours DISTANCE and Ours DISTANCE+SW
models. All of them use the pretrained weights from
Longformer-base (Beltagy et al., 2020) model.

A More Information on the Pretrain
Task

Pretrain Data Preprocessing As described, for
pretrain model we retain the same OCR engine for
generating and aligning layout and text information
from LayoutLM (Xu et al., 2020). The task is also
the same, which is Masked Language Modeling
(MLM). To deal with long documents, we have to
implement the additional sliding-window, random-
block and distance-based masks.

Pretrain Model Implementation Our solution
only makes changes to the attention module, in
which uses can choose to use any types of attention
masks from the 4 variants illustrated in Figure 3.

For the SW and SW+RAND models which are
also our new pretrain models, we implement the
layout-related part on top of the original BigBird ’
and Longformer ® implementations from Hugging-
face’s transformers, respectively. Otherwise the
distance-based masks, which are employed in D1s-
TANCE and DISTANCE+SW models, are newly
implemented as a pluggable module.

Training MLM We pre-train the task on the
IIT-CDIP datasets, using a single-node multi-GPU
mode. Each job was run on a server with 8 V100

7https://huggingface.co/transformers/modelidoc/

bigbird.html

8https://huggingface.co/transformers/modelidoc/

longformer.html

Nvidia GPUs, each of which has 32GB memory
and fast processors. For text-only models, please
refer to LayoutLM’s github °.

For SW model, we use the public pretrained
weights from Lomgformer (Beltagy et al., 2020).
Other of our models employ the same set of pa-
rameters, except for the pretrained weights, in
which SW+RAND model uses the weights from
Bigbird (Zaheer et al., 2020) and the last two
models having distance masks (DISTANCE and
DISTANCE+SW models) use the same pretrained
weights as SW model, as demonstrated in Table 4.

It is also worth noting that the pretrained weights
from Longformer and Bigbird models are useful
even for the models using distance masks because
those two model families support documents with
length 4096, so the position embeddings are help-
ful. For speed and memory tradeoff, we limit the
context for distance masks to only 128 (vs. 512 in
textual contexts), without sacrificing much perfor-
mances, as reported in Section 4.3.

Training Notes Although not reported in the
main content, we note some lessons learned from
the pretraining task. As we observe, the Ours SW
model consistently achieves the best results, while
consuming the least GPU memory. For the base
model, it only consumes about 7 GB GPU mem-
ory and Ours DISTANCE+SW that uses sliding-
window attention on its half processing also con-
sumes about 9 GB memory. Both models, as a
result, can be deployed well on a broad range of
GPUs in the market.

Unlike those conveniences, Ours SW+RAND
and Ours DISTANCE do not share the same ad-
vantages. In fact, they consumes about more than
30GB GPU memory each, limiting their practi-
cality. We hypothesize the main reason for such
drawbacks is that they have random, inconsistent
patterns, and hence there is no efficient way to take
advantage of fast memory-efficient and fast matrix
operations.

Finally, although showing promising practical
behaviors, all baselines and our models, and al-
most any transformer-based ones are certainly not
lightweight models. And although there are ad-
vancements in compressing those heavy models
(e.g. (Touvron et al., 2021; Frankle and Carbin,
2019), there seems to be a considerable way to go
for making these model run on mobile devices in
the near future.

9https://qithub.com/microsoft/unilm
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B More information on Finetuning Tasks

As described in the main content, after pretraining,
the saved models are the backbone for the respec-
tive fine-tuning model types. For that reason, the
parameters are mostly shared with their pretrain
counter-part models, e.g. Table 4 for Ours SW
models. Generally, we keep the same optimizer
and batch size of 32 (combined across all used
parallel GPUs).

For RVL-CDIP in the document classification
task, we use the SequenceClassification
model type. On top of the pretrain skeleton, we
add a small classifier with 2 fully-connected layers
and a drop-out layer in between. The final output is
the single class for the whole sequence/document.

For FunSD and Kleister-NDA datasets, we in-
stead use the TokenClassification model
type, which is designed to classify all-document
entities. The similar classifier is added to the pre-
trained skeleton, now with a different usage in
which each token/entity is to be classified into 1 of
the number of given classes.

What’s more, to preprocess these two datasets,
we have to ingest all available document tokens.
Likewise, with documents longer than the maxi-
mum lengths, we need to cut those documents, and
recursively treat the overflowing parts in the same
way. In terms of implementation, unlike FunSD
that is lightweight, we always want to avoid loading
the whole dataset into the memory but rather take
advantage of the data buffering in feeding to the
models. As a result, we pre-process all data first,
save them to disks and only load the respective
parts when needed.

Additional Information for Kleister-NDA It
is worth recalling that the evaluation of it is tricky
if using the provided official GEval evaluation
script (Gralifiski et al., 2020)'°. In detail, given
the predited tokens, one has to retrieve the associ-
ated texts in a group. For example, the beginning
of an entity group usually starts with a class begin-
ning with "B-", followed by a series of "I-" tokens.
However, there is no guarantee that the prediction
will always return a group having this meaningful
pattern, let alone many other complicated cases
that can happen. Such complications make the
post-processing of the prediction— before feeding
to GEval—very difficult and importantly, not easily
reproducible. In fact, amongst recent papers that
report performance on this dataset (e.g. in Xu

1Ohttps ://github.com/applicaai/kleister-nda

Figure 6: More distance masks from RVL-CDIP sam-
ples with the limit length of 2048 and 512 neighbors
each.

et al. (2021a); Appalaraju et al. (2021)), there is
reference code with which for us to compare.

Consequently, we treat this dataset the same as
FunSD, given their similarity in annotation. In
addition, because this dataset is larger and much
more difficult (due to decoying texts) compared to
FunSD, we analyze the train dataset and employ the
weighted loss based on the distribution the given
labels. As a result, our method is more transparent
and reproducible.

C Additional Samples on Distance Masks

Complementary to Figures 3¢ and 3d, we present
some more distance masks based on real samples
taken from RVL-CDIP with the same setting in
Figure 6.
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