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Abstract

In this paper, we investigated the effective-001
ness of incorporating various speaker embed-002
dings into an end-to-end speech synthesis sys-003
tem, for generating a unseen speaker’s voice004
with small-sized speech data. To do so, we005
adopted learned speaker embeddings from vari-006
ous tasks, such as voice conversion and speaker007
verification. By combining the speaker embed-008
dings using additive attention mechanism to an009
autoregressive-based speech synthesis frame-010
work, we could evaluate the performance of011
these embedding methods. To further enhance012
the speaker similarity and speech quality, the013
post-net for the output spectrogram sequence is014
replaced by a post-filter network. Experimental015
results showed that the proposed speech synthe-016
sis system with speaker embedding is capable017
of generating fluent arbitrary speech utterances018
of a unseen speaker with only few speech utter-019
ances. Besides, the post-filter network is help-020
ful for enhancing the speaker similarity and021
speech naturalness of the output speech.022

1 Introduction023

In recent years, end-to-end speech synthesis frame-024

work has achieved great results in the respect of025

speech naturalness and fluency, especially for syn-026

thesizing speech of a speaker whose speech cor-027

pus is available for training the voice model. If028

speech data of a speaker is not large enough for029

training, adapting the available voice models is030

also quite successful. Conventionally, voice models031

are adapted supervisedly, which require data align-032

ment or text transcription for the adaptation data.033

Recently, speaker embedding-based method could034

alleviate the problem. It encodes the speaker infor-035

mation directly from speech data without transcrip-036

tion, and the speaker embeddings are jointly trained037

with end-to-end text-to-speech (TTS) model. By038

applying different speaker embeddings, the gen-039

erated speech is perceived as the corresponding040

speaker. This method is also popular in voice con-041

version and vocoder model training. Besides, multi- 042

speaker speech synthesis could also be constructed 043

by using generative adversarial network (GAN) 044

framework (Kameoka et al., 2018) or autoencoder- 045

based methods (Qian et al., 2019; Chou et al., 2019) 046

to learn speaker-related information. However, for 047

generating speech of an unseen speaker, jointly 048

trained speaker encoder is not able to obtain the 049

speaker information in the training phase, therefore 050

it still requires model adaptation or transform learn- 051

ing (Jia et al., 2018; Chien et al., 2021) after model 052

training. 053

There are works that tried to tackle this problem 054

in order to generate multi-speaker TTS system for 055

unseen speakers (Chou et al., 2019; Cooper et al., 056

2020). In (Chou et al., 2019), they focused on en- 057

coding speaker and content information separately 058

with specially designed layers for the sequence-to- 059

sequence framework. By applying instance nor- 060

malization (Huang and Belongie, 2017), which 061

is widely used for style transformation in com- 062

puter vision, to encode the speaker information 063

and then the adaptive instance normalization of 064

the decoder takes the target speaker information 065

to generate speech utterances of the target speaker. 066

In (Cooper et al., 2020), a zero-shot multi-speaker 067

end-to-end text-to-speech system is implemented 068

based on speaker verification task. Their speaker 069

embedding is trained from an end-to-end speaker 070

recognition model and inputted it at pre-net and the 071

self-attention of an end-to-end TTS framework gen- 072

erated best results in both speaker verification and 073

speaker similarity tasks. These two methods have 074

a common idea that only few speech data from the 075

target speaker are required. Therefore, in this pa- 076

per, we investigate the performance of both speaker 077

embeddings and tried to further enhance the speech 078

quality and speaker similarity. 079

For constructing our end-to-end multi-speaker 080

TTS system, there are two main trends that can 081

be chosen. One is autogressive model which pre- 082
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dicts output speech frames based on previous re-083

sults, such as Tacotron2 (Wang et al., 2017; Stanton084

et al., 2018). Tacotron2 is a sequence-to-sequence085

model that encodes the input text to a textual086

embedding and then decodes it to corresponding087

Mel-spectrogram using attention alignment. An-088

other trend is non-autoregressive model like Fast-089

Speech (Ren et al., 2020) and Transformer TTS (Li090

et al., 2019). This method is much faster than au-091

toregressive method and alleviate generation errors092

derived from the attention mechanism. Besides, it093

could also adopt additional acoustic features, which094

is helpful for generating more stable and expressive095

speech output (Łańcucki, 2021).096

In this paper, we adopted the Tacotron2 as our097

baseline system due to its various applications of098

TTS systems (Stanton et al., 2018). To alleviate the099

problem of autoregressive model, in the decoding100

process, the forward attention is used instead of101

original local sensitive attention in Tacotron2 and102

the Bahdanau attention layer is added to improve103

frame repetition or skipping problem, and also ac-104

celerate the training process. For enhancing the105

speech quality of output speech, we aimed to post-106

processing the output spectrogram while not delay-107

ing the entire training process significantly. The108

organization of the paper is listed as follows. In109

Section 2, we describe our multi-speaker Tacotron110

system modified by incorporating speaker embed-111

dings and a post-filter enhancement. Section 3112

shows experimental setups and the objective and113

subjective evaluations. Section 4 concludes with114

our findings and future work.115

2 Proposed Method116

In this section, the proposed multi-speaker speech117

synthesis system is introduced. The main idea of118

the proposed system is: the speaker embedding119

is adopted for learning the speaker-level informa-120

tion such as timbre and speaking style, and thus it121

should be able to separate the speaker-level infor-122

mation from the original speech utterance while the123

language-level information is not altered. Then, we124

applied two attention mechanisms to input speaker125

embeddings for Tacotron framework integration.126

Finally, a post-filter network (Takamichi et al.,127

2014; Kaneko et al., 2017) is adopted instead of128

conventional post-net for better speech enhance-129

ment.130

2.1 Speaker Embedding and Encoding 131

process 132

In the encoding process, the input character se- 133

quences are firstly encoded by 3 convolution layers 134

and a Bidirectional LSTM as the original Tacotron 135

encoder. However, to alleviate the sequential infor- 136

mation that LSTM has to carry for long sequences, 137

we added a self-attention layer as another encoding 138

output, which is helpful for capturing the long-term 139

contextual information and thus should let decod- 140

ing process find the mapping faster. This is inspired 141

by the findings of previous works (Cooper et al., 142

2020; Yasuda et al., 2019). The encoder process is 143

illustrated in fig. 1, Note that the speaker embed- 144

ding is concatenated with both output sequences. 145

For the speaker embedding, as described in Sec- 146

tion 1, we chose two speaker embeddings to evalu- 147

ate the effectiveness for the unseen speaker prob- 148

lem. First is the LDE (Cooper et al., 2020), which 149

is trained for speaker verification task. The other is 150

the VAE-based method (Chou et al., 2019), which 151

is trained for voice conversion task. From their re- 152

sults, LDE is not only able to discriminate different 153

speakers better than conventional x-vector (Snyder 154

et al., 2018), but also useful for zero-shot multi- 155

speaker TTS system. For VAE-based speaker em- 156

bedding, it also outperformed the x-vector in the 157

voice conversion task, so we are interested in com- 158

paring these two methods in the same experimental 159

setup. 160

Figure 1: The modified framework for Tacotron encoder
with speaker embedding.
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Figure 2: The modified framework for Tacotron decoder
with speaker embedding.

2.2 Decoding process161

In the decoding process, as shown in fig. 2 in or-162

der to let two outputs from the encoder could be163

combined together, we used forward attention for164

the short-term contextual information, which can165

align the sequence faster, and Bahdanau attention166

for long-term one since it is flexible for selecting167

suitable segments from the entire sequence. The168

speaker embedding is also used in the decoding169

process, which is also fed into pre-net as previ-170

ous study suggested (Chien et al., 2021). Finally,171

a self-attention layer is added for alleviating the172

long-term dependencies to sequentially propagate173

information over long distances (Lin et al., 2017).174

2.3 Post-net and Post-filter175

Originally in the Tacotron framework, a post-net176

is consisting of 5 convolution layers to predict177

residuals for improving the reconstructed Mel-178

spectrogram. However, inspired from (Kaneko179

et al., 2017), we substituted a post-filter network for180

post-net to see if the speech quality could be further181

improved. Here, we adopted the Diffwave (Kong182

et al., 2020), which is a non-autoregressive model183

based on Markov chain to gradually convert a sim-184

ple distribution (e.g., white noise) into complex185

distributions (e.g., waveform), and it served as the186

post-filter and for our system. The output Mel-187

spectrogram from decoder is served as the input188

for training DiffWave model. Finally, a original189

WaveNet vocoder is used for generating waveform. 190

3 Experiments 191

3.1 Data and experiment setup 192

In our implementation, we used AISHELL-3 (Shi 193

et al., 2020) as the training corpus, which consists 194

of 218 speakers. In the training process, we ran- 195

domly select 173 speakers (which is about 75% of 196

the corpus) and 100 utterances for each speaker 197

as the training set. We down-sampled the sam- 198

pling rate to 22,050 Hz and extract 80-dims Mel- 199

spectrogram as the acoustic feature. The frame size 200

and step size are 1,024 and 256 samples, respec- 201

tively. Pitch range is set from 20 to 8,000 Hz. 202

For speaker embedding training, we followed the 203

provided parameters in (Chou et al., 2019; Cooper 204

et al., 2020) and set the speaker embedding size 205

as 128. The speaker embedding for each speaker 206

has been obtained by averaging the speaker embed- 207

dings calculated for all utterances of each speaker 208

in the training set. For multi-speaker Tacotron TTS 209

model training, both encoder outputs are set to 128- 210

dims. In the decoding process, the dimension of the 211

previous frame is increased from 80 to 256 before 212

entering pre-net, therefore we also increased the 213

dimension of the speaker embedding to 256 and 214

use Softsign activation function before feeding into 215

pre-net. 216

Finally, for the post-filter training, the decoded 217

Mel-spectrogram is inputted into DiffWave model 218

training process. We constructed a pseudo-parallel 219

corpus that has the same textual information as the 220

training set in order to let DiffWave learns the dif- 221

fusion probabilistic model for generating speech 222

utterance similar to original speech utterances. Ta- 223

ble 1 shows the training parameters for each mod- 224

ules used in this study. For the speaker embedding 225

training, LDE is denoted as Spkrsv and VAE is 226

denoted as Spkrvc, respectively. 227

In order to compare both models in the same sit- 228

uation, the batch size and total training step are set 229

to equal. Tacotron baseline is the original Tacotron 230

framework without self-attention while speaker em- 231

bedding is inputted into the same place as described 232

in Section 2. Tacotron + Spkrvc/sv is the proposed 233

systems with different speaker embeddings. 234

These two systems are also used the same train- 235

ing setup to evaluate the effectiveness of self- 236

attention. However, during model training, the 237

Tacotron baseline, without self-attention, could not 238

be trained properly, therefore is neglected for fur- 239
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ther evaluations and also showed that self-attention240

is necessary when speaker embedding is trained241

jointly. Finally, the post-filter is trained based on242

the original paper, however, since the goal of the243

post-filter is to generate speech utterances as sim-244

ilar to the natural speech as possible. Therefore,245

we set it to 320k based on our preliminary evalu-246

ations, which is slightly smaller than the setup of247

the original paper.248

Model Batch size Total step
Spkrvc 32 1M
Spkrsv 32 1M

Tacotron baseline 64 99k
Tacotron + Spkrvc/sv 64 99k

Post-filter 16 320k

Table 1: Model training parameters

3.2 Evaluations249

Figure 3: Visualization of speaker embeddings (Spkrvc
is used here) that are generated w/ post-net and w/ post-
filter. upper plot shows female distributions and lower
plot shows male ones.

First evaluation is comparing the performance250

of two speaker embeddings by calculating the dis-251

tortion between the generated speech and the syn-252

thesized speech, the Mel-cepstral distortion (MCD)253

is used. Here, we randomly select 5 unseen speak-254

ers from the testing set and used 10 utterances for255

each speaker. MCD is an objective measurement to256

Figure 4: Original Mel-spectrogram (top figure), Mel-
spectrogram generated from Tacotron + Spkrvc (middle
figure), and generated from Tacotron + Spkrvc + Post-
filter (bottom figure).

evaluate the acoustic feature distance between the 257

generated speech sequences and the forced aligned 258

natural speech sequences. 259

From the results from Table 2, the system us- 260

ing Spkrvc slightly outperformed the one using 261

Spkrsv. We also conduct subjective listening tests 262

for evaluating speaker similarity and speech natu- 263

ralness. Here, a 5-point mean opinion score (MOS) 264

tests were held and 19 native Mandarin speakers 265

were participated. The same set of 50 testing ut- 266

terances are used here. For speaker similarity test, 267

each participant is presented with several original 268

sentences uttered by the target speaker and asked 269

to score the speaker similarity of generated speech 270

utterances. Table 3 shows that the system with 271

Spkrvc generated speech utterances with better 272

speaker similarity. Note that for comparing speech 273

quality, only Spkrvc is used since it outperformed 274

Spkrsv in speaker similarity test. These results 275

imply that using the transfer learning of speaker 276

verification task could neglect some useful informa- 277

tion for generating natural speech while the VAE- 278

based method, which is a generative model, is more 279

suitable for TTS task. 280

For evaluating the post-filter, we used the Resem- 281

blyzer tool to visualize the output speaker embed- 282

dings of the testing 300 utterances from 10 unseen 283

male and female speakers. In fig. 3, one can see 284

that post-filter indeed generate similar embeddings 285
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to the natural ones than the post-net. Besides, fe-286

male speakers also have denser results compared287

to males. This could be the result of more female288

speakers in the AI-SHELL corpus (around 80%).289

From these results, it could be a promising find-290

ing that incorporating speaker embedding trained291

from the voice conversion task is more helpful than292

the one from the speaker verification task for gen-293

erating speech utterances of unseen speakers with294

only few speech data. Fig. 4 also shows an exam-295

ple of post-filter and post-net. One can see that296

the generated Mel-spectrogram is more detailed297

using post-filter. Demo wave files are showed in298

our page1.299

Embedding Post-filter MCD [db]

Spkrvc
Yes 9.62±0.42
No 10.16±0.53

Spkrsv
Yes 9.29±0.85
No 10.29±0.72

Table 2: Mel-cepstral distortion (with 95% confidence
interval). Note that conventional post-net is used when
post-filter is not.

Embedding Post-filter Similarity Quality

Spkrvc
Yes 3.75±0.71 3.70±0.5
No 2.70±0.41 2.67±0.35

Spkrsv
Yes 3.51±0.32

N/A
No 2.31±0.32

Table 3: The subjective MOS results (with 95% confi-
dence interval).

4 Conclusion300

In this study, we constructed a multi-speaker end-301

to-end Mandarin TTS system by integrating dif-302

ferent speaker embeddings. We further enhanced303

speaker similarity and speech naturalness by using304

a post-filter network. This system is capable for305

generating speech utterances of unseen speakers306

using only few speech utterances. In our experi-307

ments, usually 5 utterances are enough. We also308

discovered that the speaker embedding trained from309

generative method is more suitable for TTS task310

comparing to the discriminative method. Future311

work will focus on augmenting additional features312

such as prosody or articulatory features for improv-313

ing performance of the personalized TTS system.314

1https://bit.ly/3uwCleM
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