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Abstract

Monitoring child development in terms of
speech/language skills has a long-term impact
on their overall growth. As student diversity
continue to expand in US classrooms, there is
a growing need to benchmark social engage-
ment, both from a teacher-student perspective,
as well as student-student content. Given vari-
ous challenges with direct observation, deploy-
ing speech technology can assist in extracting
meaningful information for teachers. These
will help teachers to identify and respond to
students in need, immediately impacting their
early learning and interest. This study takes
a deep dive into exploring hybrid ASR solu-
tions for low-resource spontaneous preschool
(3-5yrs) children (with and without develop-
mental delays) speech, being involved in var-
ious activities, and interacting with teachers
and peers in naturalistic classrooms. For the
purpose of data augmentation, various out-of-
domain corpora over a wide and limited age
range, both scripted and spontaneous were
considered. Acoustic models based on fac-
torized time-delay neural networks, and both
N-gram and neural language models were con-
sidered. Results indicate that young children
have significantly different/developing articula-
tion skills as compared to older children. Out-
of-domain transcripts of interactions between
young children and adults however enhances
language model performance. Overall tran-
scription of such data, including various non-
linguistic markers, poses additional challenges.

1 Introduction

Early childhood (Britto et al., 2017) is the formative
years of a child’s developmental skills, which in-
clude but are not limited to cognitive, motor, phys-
iology, speech, and language development. On
average, children acquire about 900 words by 24
months (Huttenlocher et al., 1991), and show rapid

linguistic development thereafter based on speech
production, vocabulary and grammar knowledge.
Preschool classrooms are viable spaces for sup-
porting language development in young children.
Speech/language development in preschool class-
rooms is reliant on various natural communication
partners, including both peers and teachers. Chil-
dren’s speech sounds develop from their first bab-
bles until mid-elementary school (Shriberg, 1993).
Throughout early childhood (birth to 8 yrs), typi-
cally developing children are expected to progres-
sively acquire and improve production of speech
sounds. Table 1 shows speech sounds that are
expected to be developed in each stage of early
childhood. When speech production skills are

Table 1: Summary of speech sound development in
early childhood (birth to 8 yrs) in ARPAbet format.

Stage Early Middle Late
Age (years) 1 to 3 3 to 6 1

2 5 to 7 1
2

Speech M “mama” T “two” SH “sheep”
sounds B “baby” NG “running” S “see”

expected Y “you” K “cup” TH “think”
to be N “no” G “go” TH “that"

developed W “we” F “fish” R “red”
for each D “daddy” V “van” Z “zoo”

stage with P “pop” CH “chew” L “like”
examples HH “hi” JH “jump” ZH “measure”

developing, children may omit, substitute or have
inconsistency. Language planning is also evolving,
so word selection and grammar may have issues.
Not all children acquire these skills at a similar
pace, especially those with speech/language issues.
Early speech/language acquisition delays can affect
long term social and academic outcomes (Kaiser
and Roberts, 2011). Using of direct observations
(Irvin et al., 2017) or manual video coding to sup-
port teachers working with young children with
speech delays is not a sustainable, nor scalable,
endeavor. Deploying sensor-based speech moni-
toring tools in classrooms can be of immense help
to teachers in creating and maintaining a rich lan-



(d) Custom made sample t-shirt 
and location of devices

Primary Child

Secondary
Child

Adult

(c) Speaker annotation based on audio from each LENA device

Playground

BooksToilet

Discussion
Puzzle

Art

Music

Lunch

A
C

C
C

C

A
C

C

C
C

C

C
C

C

C

C

C
C

AC

A
A

C A

CC
C

C
A

C
C

A

CC
C

Time of the day

ChildAdultA C

(a) A preschool classroom 
map with activity areas.

8m

13m

(b) Schematic location of
subjects involved in 

various activities 
throughout the day.

(wearing 
the LENA)

(near Primary 
Child LENA)

(near Primary 
Child LENA)

LENA

Location 
Tracker

Figure 1: Data collection of Preschool Child-Adult Interactions.

guage environment for all children. Such tools
could provide feedback to allow teachers to bet-
ter identify children in need of further linguistic
development and support. It is known that develop-
ing Automatic Speech Recognition (ASR) systems
for children is far more challenging than for adults
(Gerosa et al., 2007), primarily due to various de-
veloping factors (e.g., articulation/pronunciation,
physiology/motor skills, vocabulary, and grammar).
Most prior research on child ASR (Stemmer et al.,
2003; Shivakumar et al., 2014; Tong et al., 2017;
Wu et al., 2019; Shivakumar and Georgiou, 2020;
Yeung et al., 2021; Rumberg et al., 2021; Gret-
ter et al., 2021) has focused on older children (6-
15 yrs), with more than 70 hours data collected
in clean/controlled settings, with just one speaker
using prompts or read stimuli, and limited sponta-
neous speech. To date, limited research has focused
on developing speech processing systems for adult-
child interactions in naturalistic preschool settings
(3-5 yrs) while they are involved in various activ-
ities throughout the day. Moreover, there is lack
of publicly available young child speech corpora
(primarily due to privacy/regulations). A recent
study (Yeung and Alwan, 2018) also described
various challenges in developing ASR systems
for single-word utterances read aloud by kinder-
garten (5-6 yrs) children achieving a Word Error
Rate (WER) of 25%. Our multi-disciplinary ed-
ucational research project focuses on quantifying
“learning" based on social engagement for use in
classroom settings by teachers. It is based on spon-
taneous interactions between multiple teachers and
preschool children (3 to 5 years) within naturalis-
tic noisy preschool classroom environments. Prior

work related to this project has primarily consid-
ered ‘speaker group’ diarization, by classifying
speech segments from adult vs. children, collec-
tively across multiple classrooms and also for child-
directed speech via an adult ASR approach. In this
study our primary focus is on developing a robust
ASR system for preschool children taking into ac-
count their developing nature and developmental
delays.

2 Corpora

2.1 Primary Corpus: Preschool Children

Spontaneous child and adult speech was captured
in preschool classrooms (Fig 1(a)), in a large urban
community in a Southern state in US, using a light
weight compact digital audio recorder (LENA1) at-
tached to subjects (Fig. 1(d)). A total of 33 children
aged 3 to 5 years with and without speech/language
delays, and 8 adults teachers participated in this
study. For a given session, multiple adults and chil-
dren were involved in various activities through-
out the day. Fig.1(b) shows a schematic diagram
of locations of the subjects through various times-
tamps of the day for a given session. Conversa-
tional speech was collected in multiple sessions
over several days in different classrooms with dif-
ferent groups of children. The LENA unit data can
be considered as individual audio stream and was
tagged into three speaker (Fig.1(c)) categories: Pri-
mary child (speech initiated by child wearing that
LENA unit), Secondary child (speech originated
by any other children within close proximity of pri-
mary child), and Adult (speech originated by any

1https://www.lena.org/



adult in close proximity). It is noted that for each
LENA audio stream, there is only 1 Primary child
and multiple Secondary Children and Adults (e.g.,
each LENA stream is associated with anonymous
child id). Out of all individual LENA audio streams,
40 streams were used for training (≈ 18 hours) and
remaining 8 for test (≈ 4.5 hours). Care was taken
to avoid overlap of the same group of children be-
tween train/test. Ground-truth was based on human
transcriptions and only the segments spoken by
both primary and secondary children (will be re-
ferred as ‘Preschool’) were considered for ASR
assessment. All participants consented to the use
of de-identified data for analysis. This study was
approved by the Institutional Review Board of both
KU and UTD for analysis.

2.2 Secondary Corpus: OGI, CMU Kids &
CHILDES

OGI Kids corpus (Shobaki et al., 2000) (≈ 60
hours) contains both prompted and spontaneous
speech of 1100 children between Kindergarten and
10th grade, collected using head-mounted micro-
phones while interacting with a computer using
prompts. For the CMU Kids corpus (Eskenazi
et al., 1997) (≈ 9 hours), speech is read aloud
by 76 children for an age range of 6 to 11 years us-
ing head-mounted microphones. Transcripts from
various corpora of the CHILDES (MacWhinney,
2014) project were also used. These corpora in
CHILDES, which were identified through a careful
review with the goal of using only those conver-
sations involving younger children (5 yrs or less)
and in naturalistic scenarios, included: Braunwald,
EllisWeismer, Gleason, Hall, HSLLD, MacWhin-
ney, McMillan, Peters/Wilson, POLER-Controls,
Sachs, Sawyer, Snow, and Sprott.

3 Experiment Setup

3.1 Data Augmentation

Both OGI and CMU corpora were used for speech
data augmentation. Previous work using either
one or both corpora (Wu et al., 2019; Yeung et al.,
2021; Rumberg et al., 2021; Yeung and Alwan,
2018) for ASR only considered scripted and not
spontaneous speech. For our study, two sets of
OGI were considered for augmentation: (i)‘OGI
Scripted’: used only scripted speech from a random
sample of children across all ages, and (ii)‘OGI
Kindergarten’(≈ 5 hours): used both scripted and
spontaneous speech of children in Kindergarten

from OGI. Spontaneous speech segment/speaker
in OGI were ≈2 mins duration each, so these were
hand transcribed into shorter segments (10 to 15
secs) for ASR experiments. Since both OGI and
CMU are clean, compared to our Preschool data,
Musan (Snyder et al., 2015) dataset was used to
degrade the audio (in OGI & CMU).

3.2 Acoustic Model (AM) Development

All acoustic model training and decoding ex-
periments were performed using Kaldi (Povey
et al., 2011). For the GMM-HMM systems, Mel-
frequency cepstral coefficients (MFCCs) (Young,
1996) were extracted for every 25 ms window
and 10 ms overlap. 13 MFCCs along with their
∆ and ∆∆ features were used as front-end fea-
tures. The GMM-HMM systems were trained to
provide frame-to-phone alignments for the DNN
based systems. Various acoustic model adaptation
techniques such as: linear discriminant analysis,
maximum likelihood linear transformation estima-
tion and speaker adaptive training were also in-
cluded in training the triphone GMM-HMM sys-
tems for better alignment. The input features to the
DNN-HMM models included a 40-D high resolu-
tion MFCCs of current and neighbouring frames
and a 100-D i-vector (Hansen and Hasan, 2015)
of the current frame. The i-vectors were calcu-
lated by generating speed-perturbed training data
with 3 (0.9,1.0,1.1) speed factors. In addition, the
high-resolution MFCCs were also replaced with
40-dimensional Mel-frequency Filter Banks Ener-
gies (MFBE) (Paliwal, 1999) by Inverse Discrete
Cosine Transform. Factorized time-delay neural
networks (TDNN-F)(Povey et al., 2018a), origi-
nally proposed as a data-efficient alternative to
TDNN for enhancing ASR performance of low-
resource languages with less than 100 hours of
data, were primarily used as hidden layers for the
hybrid DNN-HMM acoustic models. Apart from
TDNN-F layers, CNN and LSTM layers were also
deployed. A time-restricted self-attention (Vaswani
et al., 2017; Povey et al., 2018b) mechanism (with
multiple heads) was also deployed. Another data
augmentation approach called SpecAugment(Park
et al., 2019) was applied directly to MFBEs. It con-
sists of warping the features, masking blocks of fre-
quency channels, and masking blocks of time steps.
Vocal Tract Length Normalization (VTLN) (Eide
and Gish, 1996), a speaker normalization technique
to compensate for varying vocal tract lengths of



speakers and previously used in developing various
child ASR systems(Stemmer et al., 2003; Shivaku-
mar et al., 2014), was also performed.

3.3 Language Model (LM) Development
In this study, both N-gram and RNN-based lan-
guage models (LM) were used. All N-gram LMs
were trained using SRILM toolkit (Stolcke, 2002)
and the RNN-based using PyTorch. Four types
of LMs were trained from scratch using the train-
ing text: (i) only Preschool data (Sec.2.1), (ii)
Preschool, CMU and OGI-Scripted, (iii) Preschool
and OGI-Kindergarten, and (iv) Preschool and
CHILDES. Pre-trained 3-gram and 4-gram Lib-
riSpeech (Panayotov et al., 2015) LMs were also
used. For the RNN-based LMs, we used 2-layer
LSTMs of 605 embedding size and 650 hidden di-
mension. Dropout was considered to overcome
overfitting. Lattice rescoring (Li et al., 2021)
was used to decode the RNN-based LM. CMU
Pronouncing Dictionary2 was used. Various non-
linguistic markers included: laugh, cough, scream,
gasp, breath, babble, cry, loud music, crowd and
play noise, and other noise.

4 Results & Discussion

4.1 Child ASR Performance
Selected ASR experiment results are summarized
in Table 2, reporting WER on Preschool test speech
data. Exp# A1 shows a triphone GMM-HMM
AM trained on Preschool speech generate a very
high WER of 90.28% for pre-trained 3-gram Lib-
riSpeech LM. Using an 11-layer TDNN-F based
AM, 40 MFCC features and speed-perturbed i-
vector (of factor 3) in Exp# A2, a much lower WER
of 63.66% was achieved using the same LM than
Exp# A1. Replacing the 3-gram with 4-gram Lib-
riSpeech LM, a minor improvement is reported
in Exp# A3. Overall, higher N-grams did not im-
pact WER significantly across all experiments, so
only 3-grams were reported all future experiments.
Similarly, an increased speed perturbation factor of
5 (Exp# A3) also didn’t improve the WER much.
In Exp# B1 (similar to A1 except LM), we no-
tice that by using an in-domain LM, WER drops
to 78.39% as compared to 90.28% in Exp# A1.
Again in Exp# B2 (similar to A2 except LM), we
notice a significant drop of WER to 49.02% as
compared to 63.66% in Exp# A2. Interpolation of
both the above LMs and rescoring did not improve

2http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/

WERs. Using LM trained on spontaneous conver-
sations of preschool children shows a significant
improvement in our study than using pre-trained
LibriSpeech LM, as compared to previous studies
(Wu et al., 2019; Yeung et al., 2021) for older chil-
dren speech where Librispeech LM worked fine.
This signifies that young children do not follow the
grammar/language structure in spoken English or
those similar to adults, while they are still develop-
ing such skills the sentences produced by preschool
children will contain various errors such as incor-
rect grammar, repetitions, etc. In Exp# B3 by re-
placing MFCCs with MFBEs and increasing the
number of TDNN-F layers to 17, WER further im-
proves to 47.02%. However in Exp# B4, using
VTLN shows no improvement in WER (47.17%)
for DNN-HMM systems compared to Exp# B3
(previous research using VTLN has only shown
improvements for GMM-HMM systems). In Exp#
B5 by adding a SpecAugment layer to MFBEs,
and an AM using a 6-layers of CNN and 9-layers
of TDNN-F, WER further reduces to 43.03%. In
Exp# B6 by adding 1-layer of TDNN-F and LSTM,
WER increases to 44.59%. In Exp# B7, by replac-
ing the last TDNN-F+LSTM layer with multi-head
Attention, WER reduces to 42.00%. Previous re-
search (Povey et al., 2018b) had achieved improve-
ments by replacing TDNN+LSTM layers with at-
tention layers for large datasets. Again in Exp# B7,
by lattice decoding of an LSTM-based LM, WER
(42.44%) does not improve. LSTM-based LMs
are data hungry, and it seems our Preschool data
does not have enough text. Similar to Exp# B7,
in Exp#s C1 by augmenting older children speech
(CMU, OGI Scripted) to Preschool speech WER
of 43.57% was achieved. By augmenting both
scripted and spontaneous Kindergarten children
speech (OGI Kindergarten), also did not improve
WERs as shown in Exp#s D1. These results show
that: (i) age is an important factor while developing
children ASR, (ii) young children have developing
articulation skills (impacting AM performance),
and (iii) developing grammar/language skills (im-
pacting LM performance). Finally by adding the
CHILDES transcripts to Preschool in Exp# E1, for
training an LSTM-based LM and by lattice rescor-
ing we achieve the lowest WER of 39.52% across
all test subjects. In Exp# E1A, we report WERs
of 36.88% and 60.28% for test subjects with and
without speech/language delays respectively. For
the same ASR engine, children with delays show



Table 2: Child ASR Performance.

# Features Acoustic Model Acoustic Model Language Model Language WER (%) of
♣ Training Data♠ Training Data♠ Model Preschool Test

A. Using Preschool (3-5 yr) child speech and pre-trained adult LM
A1 M∆ PS GMM-Tri3 L 3-gram 90.28
A2 M∆ + I3 PS TDNN-F(11) L 3-gram 63.66
A3 M∆ + I3 vs. I5 PS TDNN-F(11) L 4-gram 62.00 vs. 61.26

B. Using only Preschool (3-5 yr) child speech
B1 M∆ PS GMM-Tri3 PS 3-gram 78.39
B2 M∆ + I3 PS TDNN-F(11) PS 3-gram 49.02
B3 E + I3 PS TDNN-F(17) PS 3-gram 47.02
B4 E + I3 PSV TLN TDNN-F(17) PS 3-gram 47.14
B5 ES + I3 PS CNN(6) + TDNN-F(9) PS 3-gram 43.03
B6 ES + I3 PS CNN(6) + TDNN-F(10) + LSTM(1) PS 3-gram 44.59
B7 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS 3-gram vs. LSTM 42.00 vs. 42.44

C. Augmenting out-domain children speech over a wide age range (5-15 yrs)
C1 ES + I3 PS + CM + OS CNN(6) + TDNN-F(9) + Attn(1) PS + CM + OS 3-gram 43.57

D. Augmenting out-domain kindergarten (5-6 yrs) children speech
D1 ES + I3 PS + OK CNN(6) + TDNN-F(9) + Attn(1) PS + OK 3-gram 42.32

E. Using out-domain naturalistic conversations of young children (5 yrs or less) and adults for LM training
E1 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS + CH LSTM 39.52

E1A Test subjects WITHOUT speech/language DELAYS vs. subjects WITH speech/language DELAYS 36.88 vs. 60.28
♣ M∆→ MFCC & ∆ & ∆∆, E/ES → Filter-Bank Energy (/with SpecAugment), I3/I5 → 3/5* Speed pert. i-vector

♠ PS → Preschool, L → LibriSpeech, CM → CMU, CH → CHILDES, OS → OGI Scripted, OK → OGI Kindergarten

higher WER.

4.2 Child ASR Error Analysis

WER, measured on the best model in Exp# E1,
constituted of 25% substitution and 12% deletion
w.r.t. the total words in test set. The total % of
errors, due to substitution and deletion, and clas-
sified by part of speech, consisted of: 45% nouns,
12% verbs, 10% pronouns, 6% prepositions, 6%
adverbs, 4% adjectives, 2% WH-words (what, who,
etc.), and 15% others. Out of all substitution er-
rors, 80% were monosyllabic words and remaining
were multi-syllabic. While for deletions, 90% were
monosyllabic words and remaining were multi-
syllabic. Out of all substitution errors, 38% words
contained at least 1 middle stage speech sound (re-
fer Tab.1), and 43% words with at least 1 late stage
speech sound. Similarly for deletion errors, 37%
words had at least 1 middle and 29% words had at
least 1 late stage speech sounds. Errors arise due to
various non-linguistic markers (e.g: [gasp]), shown
in Fig.2(1,4), otherwise do not change the meaning.
Shown in Fig.2(2,4), words pairs like ‘x-ray’ and
‘tray’, or ‘bag’ and ‘bad’ have very similar pronun-
ciations. Similarly, Fig.2(3) shows an error where
‘wanted’ was predicted as ‘want it’. In the original
audio for Fig.2(3), while the child was trying to
pronounce ‘pizza’, they did utter ‘peek’ before and
thereby it can be considered as a transcription error.

5 Conclusions

Developing ASR systems for children is difficult,
and even more challenging for younger children,
especially in naturalistic classrooms scenarios. It

Ω happy  birthday  [gasp]  kitty
Ψ happy  birthday    *** kitty

Ω kitty  cat  you  have  to  get    a xray
Ψ kitty  cat  you  have  to  get  that tray

Ω somebody  brought you    a pizza  just  what  you   ***  wanted
Ψ somebody    that you  peek pizza  just  what  you  want    it  

Ω there’s     a       so  many  letters  today  [gasp]  if  its  a  letter  for  kit kitty  put  it
in  this  borrow  bag

Ψ they’re  getting  so  many  letters  today    *** is its  a  letter  for  can kitty  put  it
in  this  borrow  bad

Ω Ground Truth 
Ψ Model Output

Figure 2: Various error scenarios of model output vs.
ground-truth.

is not possible to relate the ASR performance for
adults or older children with young children since
young children have evolving speech production
and language skills. Augmenting scripted older
children speech, and both scripted and spontaneous
speech of kindergarten children did not aid the
ASR performance for preschool children. However,
naturalistic conversations between young children
and adults help to strengthen the language model
slightly. A major challenge is transcribing speech
of young children, due to speech intelligibility, thus
requiring more time and subjective judgement for
transcribers to comprehend such speech in noisy
settings. Often, the transcribers have to rely on
their best guess. Our investigation shows that al-
though high WERs of ≈ 40% occur, to develop
robust ASR models for educational applications of
preschool children, more similar naturalistic data of
younger children in such scenarios is needed. Our
future work will emphasize on collection of similar
data, focus on strengthening the ASR model, and
also merging location information with ASR output
for feedback to teachers.
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