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Abstract

We present results from a series of experiments
that probe the ability of masked language mod-
els (MLMs), such as BERT and RoBERTa, to
respond to general knowledge questions that do
not have a single correct answer. Our investiga-
tion leverages the semantic fluency task from
cognitive science, in which a variable number
of exemplars from a semantic category (e.g.,
fruits) need to be produced in a specific or-
der. It allows us to evaluate what MLMs know
about common categories and their members,
a representative type of one-to-many relational
knowledge, and how they organize and query
such knowledge. We developed incremental
cloze tasks that reflect serial knowledge search,
and show that MLMs, especially RoBERTa,
are able to generate semantic fluency responses
that strongly resemble responses from human
subjects in both their content and dynamics.
These findings contribute to the literature on
whether and how masked language models can
be used as knowledge bases, and also provide
novel insights on their knowledge structure.

1 Introduction and Prior Work

Masked language models, such as BERT (Devlin
et al., 2019), have risen to prominence in natural
language processing (NLP) and have been success-
fully deployed a wide variety of linguistic tasks.
Beyond these applications, the possibility that these
models may also represent factual knowledge of
the world has attracted increasing attention (Rogers
et al., 2020; Kumar, 2021). To this end, recent stud-
ies have evaluated BERT (and other models) pri-
marily on fill-in-the-blank factual questions, such
as "Steve Jobs was born in [Mask]", and the met-
ric of concern is the percentage of trials where the
models produce the correct answer (Petroni et al.,
2019; Jiang et al., 2020; Cao et al., 2021).

While the fill-in-the-blank question answering
task considered in previous studies can be an effec-
tive way to examine certain types of factual knowl-

edge that BERT captures, it represents only a subset
of ways that general world knowledge can be used
by humans (or algorithms). For example, when
contemplating options of fast food chains for a
meal, there are objectively many correct answers,
and "correctness" is not necessarily the only goal
(Zhang et al., 2021; Bhatia et al., 2021). While
healthy humans access complex relational knowl-
edge and find such answers effortlessly, it remains
unclear how well masked language models are able
to deal with more complicated and richly structured
world knowledge for diverse tasks.

More formally, this type of open-ended world
knowledge questions is captured by a so-called
semantic fluency task widely used in cognitive psy-
chology to examine knowledge retrieval in humans
(Lucas et al., 1998; Binetti et al., 1995). In this
task, participants are given a category (e.g., a type
of reading material) and must provide as many ex-
amples of the category as possible. It has been
used extensively in clinical settings to understand
the cognitive characteristics of patients with intel-
lectual disabilities (Nilsson et al., 2021), and is
understood to engage a number of cognitive func-
tions, including semantic knowledge retrieval (Oh
et al., 2019).

The open-ended nature of semantic fluency also
poses a novel challenge for an intelligent system
in that its output needs to be organized in a certain
way. For example, when asked to generate a list
of animals, people’s responses routinely prioritize
more prototypical examples (e.g., cat) and exhibit
serial dependence driven by semantic relatedness,
such that cat and dog are grouped together more
often than cat and duck (Gruenewald and Lock-
head, 1980). Since masked language models have
been applied to a myriad of downstream NLP tasks,
understanding the structural properties of their out-
puts is increasingly important, as many real-world
tasks, such as music recommendation, often in-
volve multiple outputs where serial dependency



may or may not be desirable.
To address these questions, we propose a method

of generating semantic fluency responses with
BERT models, thereby extracting relational knowl-
edge from them in a way that requires serial out-
put and provides insight into their ability to repli-
cate richly structured human results. In keeping
with how performance of language models in stan-
dard NLP tasks is evaluated, we use human per-
formance on the same questions as the benchmark
and present comparisons that focus on distinct as-
pects of the output. We further compare the per-
formances of BERT and RoBERTa throughout to
examine whether and how pretraining procedures
and parameters affect the humanlike nature of the
outputs (Liu et al., 2019). To underscore the advan-
tage afforded by contextualization of MLMs, we
also compare their performances against a GloVe-
based approach (Pennington et al., 2014).

2 Answering Semantic Fluency Questions
with Language Models

2.1 BERT/RoBERTa
Our method poses semantic fluency as a series of
repeated cloze tasks on incrementally modified ver-
sions of a sentence. Initially, a BERT (or RoBERTa,
same below) model is given a sentence of the form
"An example of [category] is a [MASK]." In sub-
sequent cloze tasks, the sentence is modified to
include the previous responses the BERT model
gave. For example, if the category was "an elec-
tronic device", and BERT had already given the
responses "watch", "laptop", and "phone" (in that
order), the sentence for the next cloze task would
be "Examples of an electronic device are [MASK],
phone, laptop, and watch." Since BERT considers
the bidirectional context of the MASK token, the
method takes both the previous answers and the
category into account when deciding on the next
word to produce. Hence, our method seeks to re-
flect the serial, path-dependent nature of semantic
fluency tests performed by humans, while retaining
the basic form of cloze tasks commonly used in
existing work on knowledge extraction from these
models.

When selecting an output word for a particular
cloze task, BERT uses the associated probability
for each word that it assigns based on the cloze,
and the selection is confined to the top 30 words.
This probabilistic response production reflects the
well-established finding that human memory search

is probabilistic and can be modeled by a random
walk in a semantic network (Abbott et al., 2012).
An implication of our method’s weighted random
selection process is that different runs of the BERT
model with the same prompt can result in vastly
different output sequences, reflecting the fact that
different human participants in a semantic fluency
test can produce different word lists.

Additional constraints were applied to the out-
put words that our method produces. First, a fixed
length of the output list needs to be specified before-
hand for each run, given the lack of wide agreement
on the cognitive model for stopping during a flu-
ency task. Second, we imposed that no duplicates
are produced, including singularized or pluralized
versions of previous responses, enforced with the
Pattern library (De Smedt and Daelemans, 2012)
Similarly, the category name or its variants was
excluded from possible responses. Third, we re-
stricted the words that BERT considers to be nouns
and proper nouns, with NLTK’s (Bird et al., 2009)
part-of-speech tagging utility. Words that do not
meet all of the aforementioned restrictions are re-
moved from the options in the weighted random
selection. If no words meet all of the criteria, the
iterative process ends. While it is theoretically pos-
sible for the method to produce fewer words than
the predetermined number, this did not occur in
any of our experiments. In Section 5 of this pa-
per, we report ablation studies that removed these
constraints, and show that the performance of the
models was virtually unaffected.

2.2 GloVe
In contrast to the BERT and RoBERTa models,
GloVe does not consider the context in which a
particular word is used. Our word generation pro-
cess for GloVe mimics the one we use with BERT
models, except that we start each list of words with
a single word that captures the meaning of the cat-
egory (e.g. "a weather phenomenon" starts with
"weather"). We then consider the 30 words with the
highest average cosine similarity to the words pro-
duced so far, including the start word. We then use
these similarities as weights in a weighted random
choice among the candidate words.



3 Semantic Fluency Data

3.1 Human Data
We collected human semantic fluency data1 with
Qualtrics on Prolific2 (a crowdsourcing market-
place similar to Amazon Mechanical Turk) us-
ing three categories ("a fruit", "a type of car",
"a weather phenomenon"). The categories were
drawn from an influential study of category norms
(Van Overschelde et al., 2004). Participants were
asked to input up to 20 examples of the given cat-
egories into provided text boxes (with one answer
per text box), and were instructed to use their own
memory to answer the questions, without relying
on any external sources of information. We did not
impose a time limit upon the participants.

Spelling mistakes were corrected and all answers
were singularized, and monikers (e.g., "chevy")
were unified with formal names (e.g., "Chevrolet").
Additionally, we addressed a limitation of the off-
the-shelf BERT models. Since BERT does not out-
puts multi-word responses, such as "blood orange",
we converted multi-word variants of a particular
answer to a one-word answer (e.g. "blood orange"
becomes "orange"). These conversions did not af-
fect semantically similar answers (e.g. “tangerine”
and “clementine” were left alone). An example of
a cleaned list of fruits from the human subjects was
[apple, banana, orange, pear, plum, peach, jack-
fruit, watermelon, honeydew, mango, strawberry,
blackberry, blueberry].

3.2 BERT/RoBERTa Data
Our BERT/RoBERTa data were produced from two
off-the-shelf models in the HuggingFace Trans-
formers libary (Wolf et al., 2020): BERT-Base (De-
vlin et al., 2019) and RoBERTa-Large (Liu et al.,
2019). No additional finetuning was performed on
these pretrained models. We generated sequences
from BERT to match the distribution of list lengths
produced by the human subjects. The BERT data
were subjected to the same cleaning procedure as
the human outputs. An example of a list of fruits

1Written informed consent was obtained from the partic-
ipants, and the study protocol was approved by the Com-
mittee for Protection of Human Subjects at the authors’ in-
stitution. All participants received payment at the rate of
$15/hour for their time. The full text of instructions given to
the subjects is available at https://osf.io/bxhp7/?view_only=
9b416db4e9f140119d8b3d61c8217e57

2N = 197, of which 119 identified as female. Participation
was limited to those residing in the U.S., and the mean age
was 33.5y.

generated by RoBERTa was [pear, apple, plum, ba-
nana, raspberry, strawberry, grape orange, cherry,
mango, pineapple].

3.3 GloVe Data
Our GloVe data were produced from the glove-
wiki-gigaword-300 dataset (Pennington et al.,
2014) from Gensim (Rehurek and Sojka, 2011).

4 Evaluations

4.1 Output Content
We first examined how well the content of the out-
put, and in turn the category knowledge represented
by BERT models, aligns with that of humans. To
this end, we used the weighted Jaccard Score, a
measure of the overlap between the outputs of the
BERT-based models and the words produced by
human subjects. For each category and model, we
calculate the following score:

J =

∑
w∈H∩B P (w)∑
w∈H∪B P (w)

(1)

where H represents the set of all words produced
by the humans, B represents the set of all words
produced by the BERT-based model, and P(w) is
the production rate of a given word w across all
trials (from both Humans and BERT). As with the
standard Jaccard Score, our score has a minimum
of 0 and a maximum of 1.

The rationale for weighting words by their pro-
duction rate is to more heavily penalize missing
a common word (such as "apple", mentioned by
96.35% of human participants in the "fruit" cate-
gory) than a rare word (like "date", mentioned by
1.56% of human participants). Thus, the weighted
Jaccard Score measures the alignment of the two
sets, weighted by the "importance" of words.

Across the three categories, the weighted Jac-
card Score is consistently high, especially for the
RoBERTa-Large model (Table 1). It also out-
performs GloVe substantially in the type of car
and weather phenomenon categories, while show-
ing comparable performance for the fruit category.
Overall, these results indicate that, in terms of the
content of the knowledge about items belonging
to these categories, the RoBERTa-Large model
demonstrates a consistently strong performance
well-aligned with the human subjects.

Interestingly, being the category with lower
weighted Jaccard scores than the others for the
two MLMs, the fruit category also had the longest

https://osf.io/bxhp7/?view_only=9b416db4e9f140119d8b3d61c8217e57
https://osf.io/bxhp7/?view_only=9b416db4e9f140119d8b3d61c8217e57


Fruit Type of
Car

Weather
Phenomenon

BERT .361 (.011) .569 (.019) .803 (.012)
RoBERTa .672 (.013) .785 (.015) .795 (.013)

GloVe .698 (.016) .562 (.017) .618 (.018)

Table 1: Weighted Jaccard Scores across models and
categories (human vs. each language model). Standard
errors in parentheses, obtained via a Bootstrap proce-
dure with 10,000 iterations.

average list length (i.e., number of items produced
by humans) at 13.0, compared with 8.0 for "type
of car" and 7.3 for "a weather phenomenon". This
may have contributed to the more divergent output
content from humans and the models.

4.2 Output Dynamics
While the weighted Jaccard Score captures the
alignment between the sets of words produced by
the human subjects and the model, it does not take
into account the dynamics of response generation,
i.e., the order of words in the responses. More
specifically, we sought to capture output structure
by comparing the transitions between words that
are exhibited by the human subjects and the mod-
els. To this end, we construct first-order adjacency
matrices from our fluency data for each category
(one for humans and one for each model). In the
adjacency matrices, each row and column repre-
sents a unique word. Each entry of the matrix is
the observed number of transitions from the row
word to the column word in the sample. Therefore,
this adjacency matrix quantitative captures the well-
documented phenomena of serial dependence and
clustering in semantic fluency.

To facilitate direct comparisons, each matrix has
both its rows and columns specified by H∪B , and
both the rows and columns are kept in the same
order in both matrices. As such, the matrices con-
structed from human and model responses can then
be vectorized for computing the Pearson’s Corre-
lation Coefficient between them. As opposed to
a transition probability matrix, the use of an adja-
cency matrix naturally gives more weight to the
more frequently appearing items in the computa-
tion of the correlation coefficient.

Overall, from the similarity of the transitions
and clustering patterns among the output items,
RoBERTa demonstrates a consistent alignment
with the dynamics demonstrated in human re-
sponses, and dominates the performance of the
BERT-base model (Table 2), echoing the previous

analysis that focuses on output content. Notably,
as a non-contextualized benchmark, the GloVe-
based approach show large deficiencies in produc-
ing human-like word transitions across all three
categories, in sharp contrast with its moderate per-
formance on output content. This finding high-
lights the advantage afforded by contextualization
in BERT models in producing more nuanced tran-
sitional structure in their output.

Fruit Type of
Car

Weather
Phenomenon

BERT .184 .166 .503
RoBERTa .466 .442 .590

GloVe .208 .099 .146

Table 2: Pearson’s Correlation Coefficient val-
ues of vectorized adjacency matrices (human vs.
BERT/RoBERTa/GloVe). 1 is the highest possible value.
All p-values were < 0.001.

4.3 Holistic Discrimination: A Turing Test
Finally, we employ a Turing Test study with hu-
man participants3 as a way to further confirm the
ability of MLMs to produce humanlike responses
for semantic fluency tasks as perceived by human
observers. Since the RoBERTa-Large model con-
sistently outperformed GloVE and BERT-Base, we
only considered RoBERTa-Large in this experi-
ment. We administered our Turing Test experiment
on Prolific4.

For this test, we removed any duplicate answers
in both the human and RoBERTa-generated lists,
and also ensured that participants were presented
with human- and BERT-generated lists of the same
length. This is to ensure that participants based
their judgment on the identity and ordering of the
items mentioned, corresponding to our analyses.
Lists in the Turing test were randomly drawn from
the previous data from humans and BERT, and only
lists whose lengths were between 5 and 15 from
both humans and BERT were used. In each trial,
participants were asked to identify which of two
given lists was generated by the BERT-based model.
Each participant was given five pairs of lists per
category.

3The full text of instructions given to the sub-
jects is available at https://osf.io/bxhp7/?view_only=
9b416db4e9f140119d8b3d61c8217e57

4U.S. subjects only. N = 146 for RoBERTa-Large with 90
females, mean age 30.4y. Study approval, the attainment of
informed consent, and payment were the same as the semantic
fluency studies before.

https://osf.io/bxhp7/?view_only=9b416db4e9f140119d8b3d61c8217e57
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Across categories, RoBERTa-Large was able to
fool the human judges to a substantial degree (Table
3). The proportion of incorrect responses in the Tur-
ing test was generally close to the chance level of
0.5, indicating that the semantic fluency responses
generated with RobERTa-Large with our approach
were nearly (albeit not perfectly) indistinguishable
to human responses. In fact, a two-tailed z-test
showed that the proportion of correct responses
with all categories combined was not significantly
different from the chance level (p = 0.32).

Fruit Type of
Car

Weather
Phenomenon

RoBERTa .448 (.018) .453 (.018) .567 (.018)

Table 3: Proportions of incorrect answers in the Turing
Test study across categories (higher number means more
participants made incorrect choices). Standard errors in
parentheses.

5 Ablation Studies

In this section, we explore the impact of removing
some of the steps in our algorithm for generating
semantic fluency outputs. In particular, we exam-
ine the outputs of BERT, RoBERTa, and GloVe on
the same evaluation metrics for content (weighted
Jaccard score) and dynamics (Pearson’s correlation
of the adjacency matrix with the one from human
data) (1) when the part-of-speech (POS) constraint
is removed and (2) when both the POS and dupli-
cate constraints are removed. We find that both
metrics remain largely similar across models and
categories (Figure 15). Therefore, our results on
the performance of the MLMs and the comparison
model with GloVe reflect intrinsic properties of
these models and are unlikely to be contaminated
by these post-processing steps.

6 Conclusion and Future Work

Taken together, our results show that probing BERT
models with incremental cloze tests was an ef-
fective approach to extract one-to-many relational
knowledge as prompted by the semantic fluency
task, and that the responses generated were similar
to human responses in both content and dynamics.
Furthermore, the best performing MLM, RoBERTa,
appears to be capable of organizing and outputting

5Numerical data and standard errors are
available at https://osf.io/bxhp7/?view_only=
9b416db4e9f140119d8b3d61c8217e57

Figure 1: Weighted Jaccard Scores and Pearson’s R for
original and ablated models. NP is No POS tagging. NP,
NDC is No POS Tagging and no duplicate constraint.

knowledge in a way that could be fairly human-
like (albeit not yet perfectly) to the eyes of human
judges, as shown by the Turing Test results. In addi-
tion, RoBERTa robustly outperforms BERT across
evaluation metrics, providing additional support
for the importance of training optimization with
a novel task. While our experiments do not pro-
vide a full picture of the degree to which language
models represent knowledge in the same manner
as humans, our work broadens how language mod-
els may be probed and used as knowledge bases
(Rogers et al., 2020; Petroni et al., 2019), extend-
ing extant work to deal with more richly structured
outputs in response to inquiries of general world
knowledge.

Our experiments were limited by the fact that
the BERT models could only produce single-word
responses. Adapting a BERT model to perform the
semantic fluency task with multi-word responses
could lead to explorations of BERT’s ability to
produce richly structured humanlike responses in
a wider range of categories. Additionally, our
prompt structure only represents one way of us-
ing repeated cloze tasks to elicit complex informa-
tion from BERT models. Hence, variations on our

https://osf.io/bxhp7/?view_only=9b416db4e9f140119d8b3d61c8217e57
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prompting method can be constructed to produce
semantic fluency responses. Finally, our Turing
Test does not differentiate between the impacts of
the content and order of words in responses in a hu-
man judge’s verdict. Alternative tests may provide
insight into the extent to which human judges use
content and order to make their decisions.
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