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Abstract

Lexical and semantic matches are commonly001
used as relevance measurements for informa-002
tion retrieval. Together they estimate the se-003
mantic equivalence between the query and the004
candidates. However, semantic equivalence is005
not the only relevance signal that needs to be006
considered when retrieving evidences for multi-007
hop questions. In this work, we demonstrate008
that textual entailment relation is another im-009
portant relevance dimension that should be con-010
sidered. To retrieve evidences that are either011
semantically equivalent to or entailed by the012
question simultaneously, we divide the task of013
evidence retrieval for multi-hop question an-014
swering (QA) into two sub-tasks, i.e., seman-015
tic textual similarity and inference similarity016
retrieval. We propose two ensemble models,017
EAR and EARnest, which tackle each of the018
sub-tasks separately with off-the-shelf retrieval019
models, and jointly retrieve sentences with the020
consideration of the diverse relevance signals.021
Experimental results on HotpotQA verify that022
our models not only significantly outperform023
all the single retrieval models it is based on,024
but is also more effective than two intuitive025
ensemble baseline models.026

1. Introduction027

Widely adopted QA approaches use a two-stage028

pipeline, i.e., a retriever module followed by a029

reader module (Chen et al., 2017). The retriever is030

responsible for collecting relevant contextual evi-031

dence fragments; then the reader module combines032

the relevant information from the retriever module033

to infer the answer. While it is common to utilize034

an inference model as a reader to infer the correct035

answer from the retrieved context, most existing036

retrievers only focus on lexical and/or semantic037

matches, ignoring the inference relations between038

question and context.039

According to formal semantic notions, the se-040

mantic relationship between two text fragments041

Question: What nationality was James Henry Miller’s wife?
Answer: American

Supporting Evidences

Ewan MacColl
(1) James Henry Miller (25 January 1915 – 22 October
1989), better known by James Henry Miller stage name
Ewan MacColl, was an English folk singer, songwriter,
communist, labour activist, actor, poet, playwright and
record producer .

Peggy Seeger
(2) Margaret "Peggy" Seeger (born June 17 , 1935) is an
American folksinger.
(3) She is also well known in Britain, where she has lived
for more than 30 years, and was married to the singer and
songwriter Ewan MacColl until his death in 1989.

Semantic Equality
James Henry Miller (Q) ≈ James Henry Miller (25 January
1915 – 22 October 1989), better known by James Henry
Miller stage name Ewan MacColl (1)

Textual Entailment
American (2) ⊢ nationality (Q)
was married to (3)⊢ wife (Q)

Figure 1: An example from the HotpotQA dataset
(Yang et al., 2018) showing the two different dimensions
of relevance between the question and its supporting
evidences.

includes semantic equivalence, referential equality, 042

and textual entailment. While referential equal- 043

ity can be mostly solved by coreference resolution 044

and entity linking, semantic similarity and textual 045

entailment require deep semantic understanding 046

between question and context. Most researches 047

use semantic similarity as a shorthand to refer to 048

the well-known Semantic Textual Similarity (STS) 049

tasks, where semantic similarity is operationally 050

defined by the annotation guidelines, which fall 051

around the notion of semantic equivalence, i.e., 052

“Do these two sentences mean the same thing?” 053

(Lin et al., 2021b) While textual entailment is a 054

framework that captures semantic inference. Tex- 055

tual Entailment (TE) of two text fragments can be 056

defined as the task of deciding whether the meaning 057
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of one text fragment can be inferred from another058

text fragment. That is, a premise T entails a hypoth-059

esis H if, typically, a human reading T would infer060

that H is most likely true. For example, T: Jack061

sold the house to Peter. H: Peter owns the house.062

Here H can be inferred from T, so T entails H.063

Most of the evidence retrieval works only mea-064

sure the semantic textual similarity between the065

question and candidate corpus to determine the rel-066

evance. This works for single-hop questions, in067

which relevant information usually share the same068

entity mentions with the question. However, it is069

not sufficient for multi-hop questions. For multi-070

hop questions, the relevant relationship between071

question and evidence(s) is beyond the lexical or072

semantic similarity that is targeted by most retriev-073

ers, especially for secondary hops.074

The evidence retrieval for the multi-hop QA task075

broadly involves two different dimensions of rele-076

vance to measure: semantic equivalence and textual077

entailment. Thus, we divide the multi-hop QA evi-078

dence retrieval task into two separate retrieval tasks,079

where each aims to retrieve a subset of sentences080

that score highly on one of the relevance dimension081

respectively, and then combine them to output the082

final ranking with an ensemble model. To build083

a retrieval method that does not rely on a large084

training set with evidence annotations, we use both085

off-the-shelf statistical models and pre-trained lan-086

guage models as base models to capture the diverse087

relevance signals.088

Our contributions in this work include: (1) We089

call attention to the fine-grained aspects of rele-090

vance for multi-hop QA evidence retrieval. In par-091

ticular, textual entailment relation should be taken092

into consideration along with semantical equiva-093

lence in order to cover a more accurate relevant094

context. (2) We propose two ensemble models095

that combine diverse relevance signals captured by096

three off-the-shelf base models. Our experimental097

results demonstrate that not only are the individ-098

ual base retrieval models necessary in evidence099

retrieval but cooperate advantageously to produce a100

better ranking for multi-hop QA evidence retrieval101

when used together. (3) We empirically show the102

effectiveness of the proposed ensemble retrieval103

models by evaluating on the HotpotQA dataset,104

and show they outperform all the base models and105

also several ensemble baselines.106

2. Related Work 107

2.1. Text Retrieval 108

Traditional retrieval models such as TF-IDF and 109

BM25 (Trotman et al., 2014) use sparse bag-of- 110

words representations to collect lexical matching 111

signals (e.g., term frequency). Such sparse retrieval 112

models are mostly limited to exact matches. Dense 113

Retrieval models move away from sparse signals 114

to dense representations, which help address the 115

vocabulary mismatch problem. These models can 116

be categorized into two types according to their 117

model architecture, representation-based (Huang 118

et al., 2013; Shen et al., 2014) and interaction- 119

based models (Pang et al., 2016; Lu and Li, 2013; 120

Guo et al., 2016; Mitra et al., 2017). Hybrid meth- 121

ods (Lin et al., 2021a; Gao et al., 2020; Karpukhin 122

et al., 2020; Shan et al., 2020) aggregate the dense 123

retrieval with sparse retrieval methods to better 124

model relevance. The entailment-aware retrieval 125

models we propose are also hybrid methods that 126

combine sparse and dense retrieval methods, but 127

our method is unsupervised. Further, we combine a 128

sparse model with multiple dense models in order 129

to consider diverse relevance signals, i.e., textual 130

entailment in addition to semantic equivalence. 131

2.2. Multi-hop Evidence Retrieval 132

Research works on multi-hop evidence retrieval 133

can be broadly categorized into two directions: (1) 134

Question decomposition: (Min et al., 2019; Jiang 135

and Bansal, 2019; Fu et al., 2021; Perez et al., 2020; 136

Talmor and Berant, 2018) decompose multi-hop 137

questions into multiple single-hop sub-questions. 138

Instead of training a decomposer, our entailment- 139

aware retrieval models tackle this task in the op- 140

posite direction. That is, we assemble candidate 141

sentences pairs that carry different relevance sig- 142

nals to match against the question. (2) Iterative 143

evidence retrieval: Feldman and El-Yaniv (2019) 144

proposed a method to iteratively retrieve support- 145

ing paragraphs, using the paragraphs retrieved in 146

previous iteration to reformulate the search vector. 147

(Asai et al., 2020) iteratively retrieve a subsequent 148

passage in the reasoning chain with an RNN. Qi 149

et al. (2019) trained a retriever to generate a query 150

from the question and the available context at each 151

step. While iterative retrieval considers evidence 152

retrieval as a sequence process, so that the accu- 153

racy of subsequent retrieval steps highly depends 154

on previous decisions, our method jointly consider 155

high potential sentences pairs simultaneously. 156
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3. Methodology157

In this section, we introduce two ensemble models158

for entailment-aware multi-hop QA evidence re-159

trieval. At a high-level, we model diverse relevance160

relationships with three base models, and combine161

the relevance signals they capture to jointly retrieve162

candidate evidences for multi-hop questions.163

3.1. Task164

Given a multi-hop question Q and a corpus C =165

{P1, P2, . . . , Pm} containing a set of documents166

or paragraphs, the evidence retrieval task is to rank167

the candidate text sentences (the “unit of indexing")168

from C and return a list of top N most relevant ones169

that provide sufficient and less distracting infor-170

mation for answering Q. Estimating the degree of171

relevance of each candidate sentence to the ques-172

tion is clearly an integral part of the task. To build173

a better retriever for multi-hop questions, two di-174

mensions of relevance (i.e., semantic equivalence175

and entailment) need to be both considered in order176

to provide a more accurate estimation of relevance177

for each candidate sentence.178

We divide this multi-criterial task into two sep-179

arate ranking subtasks, which include semantic180

equivalence as well as textual entailment. 1 Both181

tasks require comparing information between the182

question and candidates, but the objectives of the183

comparison are different. In this work, we pro-184

pose to capture the entailment relations in parallel185

with the semantic equivalence with separate mod-186

els, which produce different and potentially con-187

flicting rankings. The goal is to combine them to188

figure out an aggregated ranking that promote gold189

evidence sentences to the top of the list.190

3.2. Base Models191

We chose three off-the-shelf base models to cap-192

ture diverse relevance patterns. To better estimate193

semantic equivalence, we use both a sparse model194

(i.e., BM25) and a dense model (i.e., transformers195

pre-trained for semantic search) to examine exact196

match and semantic match respectively. In addition,197

we utilized another dense model pre-trained on198

QNLI dataset for capturing entailment relation. For199

the dense models, we choose two pre-trained cross-200

encoders (CE)2 (Reimers and Gurevych, 2019),201

1For the focus of this work, we conduct coreference reso-
lution within each paragraph before the retrieval task.

2While usually much faster, bi-encoders are less effective
than cross-encoder models because the latter can exploit rele-
vance signals derived from attention between the query and

which are trained by taking concatenated question 202

and candidate sentence as a single input sequence 203

and generate an estimate of relevance score directly. 204

The two pre-trained cross-encoders we choose are: 205

MSMARCO Passage Cross-Encoder3 is 206

trained on the MS Marco Passage Ranking dataset 207

(Bajaj et al., 2016) for information retrieval. 208

MS MARCO (Microsoft Machine Reading 209

Comprehension) is a large scale corpus consists 210

of about 500k real search queries from the Bing 211

search engine with 1000 most relevant passages. 212

The model is trained to rank the most relevant 213

passage that answers the query labeled by human 214

as high as possible. 215

QNLI Cross-Encoder4 is a pre-trained model 216

obtained using the Question Natural Language 217

Inference (QNLI) dataset introduced by GLUE 218

Benchmark (Wang et al., 2018). QNLI was au- 219

tomatically derived from SQuAD, with the process- 220

ing target of question-answer entailment. 221

BM25 MSMARCO QNLI % Ques % Ques
CE CE (k=3) (k=5)

✓ ✗ ✗ 14 10
✗ ✗ ✓ 25 22
✗ ✓ ✗ 20 16

✗ ✓ 33 30
✗ ✓ 38 35

✓ ✗ 64 62
✗ ✓ 35 33

✗ ✗ ✗ 44 29

Table 1: Each line shows the percentage of questions
that have at least one evidence ranked within top-k
by the model marked with a ‘✓’ but beyond top-k by
model(s) marked with a ‘✗’. For example, there are 14%
questions with at least one evidence sentence is ranked
within top-3 by BM255 , but ranked beyond top-3 by
MSMARCO CE and QNLI CE; 35% questions with
at least one evidence sentence ranked within top-3 by
QNLI CE but ranked beyond top-3 by MSMARCO CE.

3.3. Ensemble Models 222

Since the three base models aforementioned inde- 223

pendently capture diverse relevance signals and are 224

complementing each other as shown in table 3.2, 225

candidate sentence at each transformer encoder layer.
3https://www.sbert.net/docs/

pretrained-models/ce-msmarco.html
4https://www.sbert.net/docs/

pretrained_cross-encoders.html#
squad-qnli

5https://pypi.org/project/rank-bm25
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an ensemble model should potentially improve the226

final retrieval performance if an appropriate aggre-227

gation strategy designed to combine them.228

3.3.1. Ensemble Baselines229

Average ranking (AR) is a simple ensemble230

ranking model which combines the ranking out-231

puts from the multiple base models that ranks all232

candidate sentences independently. A rank of a233

candidate sentence obtained by each base model is234

with respect to the relevance signal the base model235

targets on. Thus, each sentence has M ranks (where236

M is the number of base models). The final ranking237

is obtained by sorting the sum of all M rankings238

that each sentence received.239

Similarity Combination (SimCom) calculates240

hybrid retrieval scores through a linear combina-241

tion of sparse and dense scores. For a given ques-242

tion, we aggregate the scores produced by the base243

models through a weighted average for each candi-244

date sentence, called Question Evidence Relevance245

(QER) (see the equation in Appendix A). QER are246

then used to rank the candidate evidence sentences,247

so that candidate sentences with high relevance to248

the question are promoted to the top of the list.249

3.3.2. Entailment-Aware Retrieval250

In this work, we propose an entailment-aware re-251

trieval (EAR) method to jointly consider pairs of252

candidate sentences that potentially contain com-253

plementary relevance signals. We form such sen-254

tence pairs using the Cartesian product of two sets255

of top ranked candidate sentences with respect256

to semantic equivalence and textual entailment257

correspondingly. While BM25 and MSMARCO258

Cross-Encoder capture exact and semantic matches,259

respectively, they both aim for estimating STS.260

Thus, we take the union of top ranked sentences by261

BM25 and MSMARCO Cross-Encoder as a uni-262

fied set A = {Sa1 , Sa2 , Sa3 , Sa4}, and top ranked263

sentences by QNLI Cross-Encoder as another set264

B = {Sb1 , Sb2 , Sb3}. The pairs we consider are265

P = A× B = {(a,b) |a ∈ A ∧ b ∈ B}.266

We then concatenate the two sentences of each267

pair as a sequence to score against the question with268

a reranker6, such that the top scored sentence pair269

(Sai , Sbj ) is most likely to form a compositional270

relevant context covering both semantic equiva-271

lence and entailment relevance signals. When Sai272

6We use the MSMARCO Cross-Encoder as the reranker
since it is the best performing base model.

and Sbj are examined individually, there is high 273

chance that Sai receives a low IS score from the 274

QNLI cross-encoder and ranked down to the list, 275

Sbj can be scored and ranked low by BM25 and 276

MSMARCO cross-encoder. Thus, either using in- 277

dividual base models or aggregating ranking or 278

scores with the ensemble baseline models, Sai and 279

Sbj are unlikely to be both promoted to the top of 280

the ranking list. Finding the best combination from 281

the top-ranked subsets with respect to both seman- 282

tic equivalence and textual entailment efficiently 283

takes the compositional requirement into consider- 284

ation. We further concatenate the question q with 285

the pair Sai and Sbj as a new query to re-rank the 286

rest of the candidate sentences. 287

3.3.3. EARnest 288

Evidences for a multi-hop question should be in- 289

tuitively related, and often logically connected via 290

a shared named entity that would allow a human 291

reader to connect the information they contain. The 292

presence of a shared named entity between two can- 293

didate sentences often indicates the likelihood that 294

the sentence pairs relate to each other and, thus, 295

they can be connected to form a coherent context 296

for the question. 297

To leverage such connection as an additional cue, 298

we add a named entity similarity term (NEST) to 299

the scoring function of the reranker in EAR when 300

estimate the top scored sentence pairs as 301

QEREarnest = (1 + NEST ) ∗ Sim(q, si ∥sj) 302

where Sim() is the scoring function of the reranker, 303

which scores the concatenation of sentence pair Si 304

and Sj against the question. NEST is a binary 305

switch, that is, if the two sentences share one or 306

more named entity, the promotion mechanism is 307

activated; otherwise it is deactivated. 308

Named Entity Similarity Term Besides using 309

SpaCy (Honnibal et al., 2020) to recognize named 310

entities with common entity types (such as names 311

of people, places, organizations), we also consider 312

titles of documents and phrases between a pair of 313

single or double quotes. When comparing whether 314

two sentence share an entity, we apply basic nor- 315

malization (i.e., lower case, removing articles and 316

special punctuations) and fuzzy match to tolerate 317

typo, variations, and inclusive match. 318
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4. Evaluation and Results319

4.1. Dataset320

We conduct our evaluation using HotpotQA dataset321

(Yang et al., 2018). HotpotQA contains two ques-322

tion categories: bridge-type questions, in which323

an intermediate entity is needed to be retrieved324

before inferring the answer; and comparison-type325

questions, which compare two provided entities.326

Given the focus of this work, we use solely the327

bridge-type questions in our evaluation.7 We con-328

duct the evaluation of our proposed methods on the329

5918 bridge-type questions out of the 7,405 exam-330

ples from the development partition of HotpotQA331

dataset in the distractor setting. Each question in332

HotpotQA is supported by two documents, and333

provided with ground-truth supporting sentences,334

which enables us to evaluate the evidence retrieval335

performance of the various models.336

4.2. Results337

Table 2 reports the evidence retrieval performance338

of all models discussed. All three base models that339

target either semantic equivalence or inference do340

not yield optimal performance. As expected, the341

MSMARCO CE achieves the highest performance342

among the base models, as it is a strong baseline343

that is commonly used for retrieval tasks. How-344

ever, it only considers the semantic matching be-345

tween question and individual candidate sentences,346

ignoring the other important relevance matching347

characteristics such as exact matching signals, tex-348

tual entailment, and relatedness between candidate349

evidence sentences.350

For the baseline ensemble models, AR per-351

forms worse than the MSMARCO CE, while being352

slightly better than BM25 and the QNLI CE. Its353

retrieval performance is essentially a compromise354

among the performances of the three base models,355

because it directly averages the individual ranking356

results. In contrast, SimCom8 does take advantage357

of complementary relevance signals from the base358

models, so to perform better than any of the indi-359

vidual base model. However, it fails to deliver the360

best overall performance because it simply com-361

bines the final output scores from the base models362

7On average, comparison-type questions are easier to an-
swer because the necessary information (i.e., the two entities
to be compared) tends to be present in the question.

8The result of the SimCom model uses α = 3 and β = 1,
which achieves the highest performance according to the grid
search results on 10% of the full dataset.

Models P@3 P@5 MAP R@3 R@5 R@10
Base models

BM25 0.43 0.31 0.59 0.54 0.65 0.78
MSmarco 0.47 0.33 0.64 0.59 0.69 0.81
QNLI 0.33 0.25 0.46 0.43 0.52 0.65

Ensemble Baselines
AR 0.43 0.31 0.61 0.55 0.66 0.83
SimCom 0.5 0.36 0.68 0.63 0.74 0.86

Our Approach
EAR 0.53 0.36 0.71 0.66 0.76 0.86
EARnest 0.55 0.38 0.74 0.7 0.78 0.87

Table 2: Evidence retrieval results of base models, base-
line ensembles, and our methods on HotpotQA. As can
be seen, the performance of our proposed ensemble
methods (EAR and EARnest) are effective for improv-
ing the retrieval performance in terms of all the metrics.
Our best model EARnest achieves the highest MAP
performance, outperforming all the base models and
ensemble baselines.

without exploiting the interactions between the rel- 363

evance signals behind. 364

Lastly, our approaches (i.e., EAR and EARnest) 365

not only outperform the base models, but also ex- 366

ceed the order-based and score-based ensemble 367

models on all metrics. They both jointly consider 368

diverse relevance signals simultaneously, and there- 369

fore achieve greater improvements on the retrieval 370

performances. EARnest further considers the re- 371

latedness between evidence sentences, becoming 372

our best model. It achieves the highest MAP, and 373

higher than the MSMARCO CE by 10%. 374

5. Conclusion 375

In this work, we showed that successful relevance 376

matching for evidence retrieval in multi-hop QA 377

requires considering diverse signals including ex- 378

act matching, semantic textual similarity, and tex- 379

tual entailment between question and candidate 380

sentences, and relatedness between candidate ev- 381

idence sentences. We applied off-the-shelf statis- 382

tical models and transformers to capture different 383

dimensions of relevance and effectively combined 384

them to jointly retrieve candidate evidences that 385

cover diverse and most relevant information for the 386

question when concatenated. Experimental results 387

on HotpotQA reveal that our models are effective 388

for improving the retrieval performance for multi- 389

hop questions, comparing to all the single retrieval 390

models they based on, also the order-based and 391

score-based ensemble baseline models. 392
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Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and435
Wen-tau Yih. 2020. Dense passage retrieval for436
open-domain question answering. arXiv preprint437
arXiv:2004.04906.438

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-439
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.440
2021a. Pyserini: An easy-to-use python toolkit to441
support replicable ir research with sparse and dense442
representations. arXiv preprint arXiv:2102.10073.443

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.444
2021b. Pretrained transformers for text ranking: Bert445
and beyond. Synthesis Lectures on Human Language446
Technologies, 14(4):1–325.447

Zhengdong Lu and Hang Li. 2013. A deep architec- 448
ture for matching short texts. Advances in neural 449
information processing systems, 26. 450

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han- 451
naneh Hajishirzi. 2019. Multi-hop reading compre- 452
hension through question decomposition and rescor- 453
ing. 454

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. 455
Learning to match using local and distributed repre- 456
sentations of text for web search. In Proceedings 457
of the 26th International Conference on World Wide 458
Web, pages 1291–1299. 459

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, 460
and Xueqi Cheng. 2016. A study of matchpyra- 461
mid models on ad-hoc retrieval. arXiv preprint 462
arXiv:1606.04648. 463

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun 464
Cho, and Douwe Kiela. 2020. Unsupervised ques- 465
tion decomposition for question answering. arXiv 466
preprint arXiv:2002.09758. 467

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and 468
Christopher D Manning. 2019. Answering complex 469
open-domain questions through iterative query gen- 470
eration. arXiv preprint arXiv:1910.07000. 471

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 472
Sentence embeddings using siamese bert-networks. 473
arXiv preprint arXiv:1908.10084. 474

Xuan Shan, Chuanjie Liu, Yiqian Xia, Qi Chen, 475
Yusi Zhang, Angen Luo, and Yuxiang Luo. 2020. 476
Bison: Bm25-weighted selfattention framework 477
for multi-fields document search. arXiv preprint 478
arXiv:2007.05186. 479

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, 480
and Grégoire Mesnil. 2014. Learning semantic rep- 481
resentations using convolutional neural networks for 482
web search. In Proceedings of the 23rd international 483
conference on world wide web, pages 373–374. 484

Alon Talmor and Jonathan Berant. 2018. The web as 485
a knowledge-base for answering complex questions. 486
arXiv preprint arXiv:1803.06643. 487

Andrew Trotman, Antti Puurula, and Blake Burgess. 488
2014. Improvements to bm25 and language models 489
examined. In Proceedings of the 2014 Australasian 490
Document Computing Symposium, pages 58–65. 491

Alex Wang, Amanpreet Singh, Julian Michael, Felix 492
Hill, Omer Levy, and Samuel R Bowman. 2018. 493
Glue: A multi-task benchmark and analysis platform 494
for natural language understanding. arXiv preprint 495
arXiv:1804.07461. 496

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 497
gio, William W. Cohen, Ruslan Salakhutdinov, and 498
Christopher D. Manning. 2018. Hotpotqa: A dataset 499
for diverse, explainable multi-hop question answer- 500
ing. 501

6

http://arxiv.org/abs/1911.10470
http://arxiv.org/abs/1911.10470
http://arxiv.org/abs/1911.10470
http://arxiv.org/abs/1911.10470
http://arxiv.org/abs/1911.10470
http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1906.06606
http://arxiv.org/abs/1906.06606
http://arxiv.org/abs/1906.06606
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://arxiv.org/abs/1906.02916
http://arxiv.org/abs/1906.02916
http://arxiv.org/abs/1906.02916
http://arxiv.org/abs/1906.02916
http://arxiv.org/abs/1906.02916
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600


A. QER of Similarity Combination502

QERq,sj
=



η(BM25q,sj
)+α·η(STSq,sj

)+β·η(ISq,sj
)

3

if BM25q,sj
>0

α·η(STSq,sj
)+β·η(ISq,sj

)

2

Otherwise

503

where semantic textual similarity (STS) and infer-504

ence similarity (IS) are scores from MSMARCO505

CE and QNLI CE. It first normalizes the scores506

with η9, and then combines the normalized scores507

using the weights α and β.508

B. Impact of K509

EAR and EARnest both jointly consider pairs of510

candidate sentences top ranked by the base models.511

The cut-off parameter K is used to partition sen-512

tences considered as top-ranked by individual base513

model or not. The larger K is, the more exhaus-514

tive combination of candidate sentence pairs would515

be considered. However, the number of pairs is516

quadratic in the number of K, so it becomes much517

more computational costly when K is too large.518

Thus, we test on 600 randomly sampled questions519

(about 10% of full dataset) to compare the impact520

when changing the value of K. The resulting re-521

trieval performance is exact same when changing522

K from 3 to 5, while the number of pairs compared523

increases from 12 to 33.5 on average. This is ex-524

pected, because we only consider the top pair to525

scored against the question, and sentences in the526

pairs are often more likely to be ranked closer to527

the top of lists by base models respectfully since528

they contain stronger relevance signals.529

C. Necessity of Inference model530

To further demonstrate the benefits brought by the531

inference model, we conduct an ablation experi-532

ment by replacing the QNLI CE in EARnest with533

MSMARCO CE while keep everything else the534

same. We also compare the difference on retrieval535

performance with the randomly sampled 600 ques-536

tions. The result is shown in table C. Without537

the QNLI CE capturing the entailment relation to538

promote evidences that are can be inferred by the539

questions to the top, BM25 and MSMARCO CE540

might miss them according to lexical and semantic541

matches. Therefore, the result is significantly lower542

8https://pypi.org/project/rank-bm25
9η performs normalization to scale inputs to unit norms

with Scikit-learn’s normalizer:https://scikit-learn.
org/stable/modules/generated/sklearn.
preprocessing.Normalizer.html

Models P@3 P@5 MAP R@3 R@5 R@10
BM25 0.44 0.32 0.6 0.55 0.66 0.79
MSmarco 0.47 0.34 0.65 0.59 0.71 0.82
QNLI 0.34 0.24 0.45 0.43 0.52 0.64
EARnest 0.56 0.38 0.75 0.71 0.8 0.88
EARnest - QNLI 0.52 0.37 0.7 0.66 0.77 0.86

Table 3: With the EARnest ensemble model framework,
we replace QNLI CE with Ms Marco CE, and the re-
trieval performance significantly decreased. Comparing
to the full EARnest model, MAP drops 5% without
exploting the QNLI CE model to capture the textual
entailment relevance signal.

than the full EARnest model, which confirms that 543

textual entailment is a very important relevance 544

signal to the multi-hop QA evidence retrieval task 545

and should be considered along with the semantic 546

equivalence. 547
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